

1st Learning unit processing unit architecture

1st Learning unit

1st Lesson:

Computer Architecture

In this lesson we learn:

- To know processing unit architecture
- To know Von Neumann and Harvard models
- How to recognize the role of processing unit components (CPU, RAM, I/O, BUS)

Different Kinds of computer

A computer is a physical device that implements the operations of a Turing machine.

A Turing machine is an imaginary machine that is able to manipulate data written in a endless lenght ribbon

Turing Machine

Does always exist, in principle, a mechanic method (strictly) by which we can determine if every mathematical statement is true or false? Turing said NO.

Computer

- A computer runs (as Turing machine does)
- There are general and special purpose computer
- PC is a general purpose computer, a microcontroller is a special purpose computer

Computer: how to access to resources

- A general purpose computer can be:
 - monouser (monotasking or multitasking)
 - multiuser (is multitasking and carries out resources timesharing)

Integration scale

- Integration scale is the measure of how many transistors are built in a single integrated chip
- SSI (Small Scale Integration): <100 transistor
- MSI (Medium Scale Integration): <1000 transistor
- LSI (Large Scale of Integration): <10.000 transistor
- VLSI (Very Large Scale Integration): <100.000 transistor
- ULSI (Ultra Large Scale Integration): >100.000 transistor

Growth of scale integration

Alessandra de Vitis

• 9

Different types of computers

From super computer to home computer tablet smartphone Videogames console

Moore Law

- Gordon Moore (in 1965) said that every year transistors integrable in a single chip would double.
- In 1975 Moore had to change his law and said that from that moment the number of integrable transistors in a single chip woul double every 2 years.

Virtual machines

- A virtual machine o VM make it possible to reproduce the functions of othe operation systems, smartphones, or other kind of computer directly on a PC or other device with EMULATION process.
- VM are used to simulate or test a software without phisically installing it.

Computer architecture Computer = Hardware + software

Alessandra de Vitis
 ■ Alessandra de Vitis

Computer architecture

- Computer architecture is the set of concepts, and technics to define, project, evaluate a processing system.
- The goal is to obtain the best performance from electronic components. Electronic goal is to product more and more fast and efficient circuitery.

Electronic components in a computer

Logical gates Signals generators

Logical gates

Name	NOT A A A		AND AB AB A B X			NAND AB			OR A+B			NOR $\overline{A+B}$			XOR A⊕B		
Alg. Expr.																	
Symbol																	
Truth Table	A 0 1	X 1 0	B 0 0 1 1	A 0 1 0 1	0 0 0	B 0 0 1 1	A 0 1 0 1	1 1 1 0	B 0 0 1 1	A 0 1 0 1	X 0 1 1	B 0 0 1 1	A 0 1 0 1 1	X 1 0 0	B 0 0 1 1	A 0 1 0 1	X 0 1 1 0

Signals generators

They are able to product a periodic signal useful to syncronize all hardware components in a computer.

Von Neumann Model

Von Neumann model describes the behavior of a machine stored-program computer

Von Neumann Model

Is the CPU that takes actions as:

- Pick up or modify memory content
- Pick up or modify informations from input/output devices giving output informations or reading informations in input

CPU takes actions lin a sequential way one by one very

Von Neumann Model: stored program

- stored-program is the instructions set executed by CPU stored in computer memory.
- Instructions set is the program to be executed.
- In the memory there are instruction (in assembly) and data used in execution programs

Harvard Model

- Harvard model has 2 different memories: 1 for data e 1 for instructions.
- It is used in specialized processors as DSP or PIC.

Memory

- RAM (Random Access Memory) oppure ROM (Read Only Memory)
- RAM is random access
- ROM contains BIOS
- It is organized in locations or cells (1 byte long) with its own address (memory address)
- Access time: nanoseconds

I/O Input Output

- Input devices are able to acquire signals from outside
- Output devices are able to send signals to outside.
- Signals are represented by bits sent and received from those devices

CPU & I/O

- CPU menages communication between I'I/O in asyncronous way with a signal called interrupt (IRQ)
- I/O devices are often just controller interfaces with the real device.

Controllers

Controllers are devices near the real devivce and manage between the communication device and the BUS connected through a communication protocol represented by the communications rules set between CPU and the device

BUS

- Data Bus enables data transmission from CPU to other elements and viceversa (bidirectional)
- Address Bus) conteins location or I/O device address on or from CPU has to work (monodirectional)
- Control Bus) transports orders from CPU and returns condizion/state signals from devices

CPU

- Executes data and it is represented at physical level by the microprocessor
- Executes program instructions, written in high level language and the translated in machine language

Something about howCPU works

- CPU extracts instructions from memory, le codes and executes them
- Data transfer between variuos components (as for memory and I/O) occours with system Buses.
- Every process are syncronized with a system
- During every time lapse CPU establish what operation run.