
Methods in Computer Science education: Analysis
2023-24

Teaching Computational Thinking through Programming

 Andrea Sterbini – sterbini@di.uniroma1.it

https://creativecommons.org/licenses/by-nc-sa/4.0
mailto:sterbini@di.uniroma1.it

2023-24 lesson 1Methods in Computer Science education: Analysis

What are we doing here?

GOAL: How do we teach Computational Thinking and Programming?

WHY? (today)

 Define the Computation Thinking concepts

 Define the course structure and what will be your assignments

and HOW? (rest of the course)

 Analyse several learning environments/languages/programming styles

 Analyse example of CS curricula and of learning units

 Build learning units

https://en.wikipedia.org/wiki/Computational_thinking

2023-24 lesson 1Methods in Computer Science education: Analysis

WHY should we teach kids coding and C.T.?

1. To prepare new generations to new jobs? (?!?!?)

What about AI-generated programs? What about programmers exploitation?

2. To ask kids to build stories in a different way than just writing?

Story-telling as a creative way of creating and playing/moving characters

3. To vaccine youngsters against bad algorithms?

Avoid being only program consumers and data producers

4. To empower everybody to be able to write her programs?

5. To introduce Computational Thinking <==

6. To introduce constructive didactics in any discipline <==

2023-24 lesson 1Methods in Computer Science education: Analysis

KEY effects of teaching Computational Thinking

Motivating students’ interest through

Robotics, Storytelling, Simulation, Social impact, Video-games, Embedded systems (see CSEDU: Design),
CS Unplugged, Personal interests

Role playing and mental models of computation

Importance of Randomness in creativity, discovery, exploration

Simulation of Natural evolution / Artificial Intelligence

There are MANY programming styles!

Functional filters and transformations→ Procedural drive a robot/agent→

Declarative/logic relations & rules→ OOP office metaphor→

CS: the Science of “HOW TO DO/DESCRIBE/BUILD/SIMULATE”

2023-24 lesson 1Methods in Computer Science education: Analysis

A ‘BIT’ of History of educational programming languages

When Where Language Inspired by Created by

1964 Darthmout BASIC [Kemeny & Kurtz]

1969 BBN Logo Lisp [Feurzeig, Papert & Solomon]

1970 Zurigo Pascal [Wirth]

1981 Carnegie Mellon Karel Pascal [Pattis]

1996
Apple/Disney

HP/SAP
Squeak Smalltalk [Kay, Ingalls & Goldberg]

1996 Disney e-Toys Logo/Smalltalk [Kay]

1999 NortWestern NetLogo Logo [Wilensky]

2001 Guido van Robot Python [Howell]

2006 MIT Scratch Logo [Resnick]

2010 India Kojo Scala [Pant]

2014 Sacramento Flowgorithm Flowcharts [Cook]

2016 Apple Swift Ruby/Python/...

https://en.wikipedia.org/wiki/Category:Educational_programming_languages
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Karel_(programming_language)
https://en.wikipedia.org/wiki/Squeak
https://en.wikipedia.org/wiki/Etoys_(programming_language)
https://en.wikipedia.org/wiki/NetLogo
http://gvr.sourceforge.net/
https://scratch.mit.edu/
https://www.kogics.net/kojo
http://www.flowgorithm.org/
https://en.wikipedia.org/wiki/Swift_Playgrounds

2023-24 lesson 1Methods in Computer Science education: Analysis

But there are many more ...

Alice (Java)

Blockly (visual)

 Code.org

Appinventor

CiMPLE (C)

Kodu

Lego Mindstorms

Mama

Greenfoot (Java)

ToonTalk

Snap! (at Stanford)

Stencyl

Prolog (text-based)

… and may others

(you can use the one you like)
Please suggest more!

2023-24 lesson 1Methods in Computer Science education: Analysis

WHAT is Computational Thinking? [Papert ‘80]

Abstraction
Analysis, representation

Automation

Planning steps
Define sub-problems,
and transformations

Analysis
Observation, consequences,
evaluation, difference w.r.t.
predictions

Image by KaptainFire - Own work A. Repenning, A. Basawapatna, and N. Escherle, "Computational Thinking Tools," to appear at the IEEE Symposium on Visual
Languages and Human-Centric Computing, Cambridge, UK, 2016., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48453667

2023-24 lesson 1Methods in Computer Science education: Analysis

Computational Thinking
1) Abstraction

Abstraction of information/representation

Data representation, variables and memory, objects and attributes, types

Abstraction of process/control

Sequential algorithms, event-based programming, parallel programming,
data flow, declarative programming, object oriented programming,
functional programming

Abstraction of methodology / problem analysis

Top-down analysis, bottom-up analysis, declarative style, flow-based,
pattern-matching rules, object orientation, functional, ...

2023-24 lesson 1Methods in Computer Science education: Analysis

Computational Thinking
2) Automation

Find a suitable representation for the information

Split the problem in small steps (or better said “smaller problems”)

Order them in one or more sequences/algorithms

Describe the data flowing between steps

Find a “suitable” implementation of the steps (algorithm)

Within the constrained resources available (time, memory)

But also: (motivation for literate/well documented programming)

Prepare for the evolution/maintenance of your solution (describe goals)

Keep track of the ideas guiding your thoughts/analysis (add comments)

Enable/empower others to use your solution (add usage documentation)

2023-24 lesson 1Methods in Computer Science education: Analysis

Computational Thinking
3) Analysis of the execution

Prepare for observation
Choose good visualizations, show/spy intermediate data to expose inner details

Compare with expectations (mental model of the computation)

Simulate the algorithm in your head, predict the outcome for simple cases,
define test cases / examples

Diagnose discrepancies w.r.t. specification AND expectation
Find reasons for observed discrepancies, use assertions to early detect for anomalies,
debug and observe the inner computation (variables AND flow)

==>> Better understand BOTH the problem AND the computer

The problem description/specification could be challenging to fully grasp
The programming language, functions, libraries can be tricky to master

2023-24 lesson 1Methods in Computer Science education: Analysis

BUT: What about the Social impact of C.T.?

C.T. could be seen as too much focused on the C.T. process
 Abstraction / Automation / Analysis

A critique moved to C.T.:
little analysis of the impact on other fields

 Think to: Reuse and modularity, analogy, social impact

For this reason (and others) we will design ONLY interdisciplinary units

And we must give a lot of attention to the program “life”
and to the data required, managed, deduced

2023-24 lesson 1Methods in Computer Science education: Analysis

Why one should learn C.T.?

Pro:

Computer Science is the Science of HOW (to represent, to compute, to solve)

You will see other fields/subjects (Society, Music, Language, Art, Medicine …)
with a different analytic / creative eye

Society is more and more computer-based, therefore knowing how to write/understand
programs makes you less dependent on other people

You can explore (virtually and physically) new ideas at relatively low cost

Even if you WILL NOT program, you will understand the possibilities and you will be
able to describe what you want to be programmed/created

Con:

Shabby/good-enough solutions trick you into false understanding and lazy methodology

The social impact of a program or of its data could be way bigger than you think

2023-24 lesson 1Methods in Computer Science education: Analysis

Things you hear about Computers from newbies ...

You just need to know how to USE a computer (Word/Excel/PPoint) (WTF?!?)

Computers are FAST

BUT DUMB!!! Limited instructions BUT bloody fast CPUs and intelligent algorithms

Computers are FLEXIBLE and MULTI-PURPOSE

BUT RIGID and UNFORGIVING :-) There are soooooo many details to be aware of
(declarations, initializations, scope, arguments, program termination, syntax, errors …)

Computers SAVE YOUR TIME, Programming is EASY (!?! WTF !?!)

BUT programming is TIME-CONSUMING, you must be EFFICIENT and PERSISTENT:

When you code: (good IDEs, good documentation, easy programming languages, …, GOOD METHODOLOGY)

When you run (efficient algorithms, special data structures, …)

When you fix YOUR (or other’s) mistakes (good documentation, good tests)

Computer can store HUGE amount of data

BUT RAM memory space is limited.
Virtual Memory helps but SLOOOOWS DOWN EVERYTHING

2023-24 lesson 1Methods in Computer Science education: Analysis

What new concepts are introduced
because of Computers? (methodology level)

Problem solving by reduction to smaller problems

Algorithm as a sequence of actions changing the state of the computer
(but see other styles also! declarative / parallel / data-flow / rule-based programming or … neural networks!)

Data representation
Algorithms must manage some meaningful representation of information

Constrained execution! (time, memory)

Simulation as tool to explore the impossible (“What if?” - Concrete didactics)
Explore multiple consequences in a virtual world with new rules

Empowerment and collaboration of the individual in the society
Open-data, Open-formats and Open-source development enable the single to collaborate with others and
tackle global issues

Social issues of the information you receive/derive
Information as a good to be sold/exchanged.
Sensitive data to be protected from bad actors.

2023-24 lesson 1Methods in Computer Science education: Analysis

Motivation, in school, could be a huge problem

Teaching programming to university students is way easier (!?!?!)
They chose it, and we (try to) go deep in many interesting ways

Some high school students didn’t choose the topic, but could be motivated
by raising their interests with concrete interesting problems

Robotics, Embedded systems (see CS-edu:Design), Storytelling, Simulation,
Social impact, Video games, Personal interests, Local issues, Mobile apps, ...

Role playing can make C.T. concepts very clear in a playful way to younger
students to understand what a computer is/does

They could either pose as the “programmed agent” or be the “programmer god”

“CS Unplugged” activities show C.T. methods without a PC
Appealing for very very young students

2023-24 lesson 1Methods in Computer Science education: Analysis

What new concepts are introduced
because of Computers? (computer specific)

Program = Precise algorithmic definition of a solution

STATE changing through time (THE main difference w.r.t. Math)

Information representation/encoding, data types
(analogy with Physics measure dimensions – eg. speed=space/time)

Names/variables vs memory (HUGE misunderstandings arise here)

Functions, arguments, return values

Side-effects! (and bloody global variables)

Language syntax (bloody parentheses and semicolons)

Objects, attributes (and again, changing internal state)

Methods as object’s actions/abilities, the office metaphor

Control structures (loops/repetition, exit conditions)

2023-24 lesson 1Methods in Computer Science education: Analysis

How to analyse and build a program?
Top-down analysis

Define input/output data representation

Write a high-level description of the problem, divided in simpler subproblems

Implement the algorithm by defining mock functions for each step, mimicking their I/O
If needed:

define the additional intermediate data passed between steps
add the initial data definition and initialization

Test if the logic is correct
Repeat the analysis/implementation on each high-level step/function so defined
When the steps are sufficiently detailed and similar to the programming language constructs,
implement the actual program

Be aware that
Global variables → produce subtle side-effects hidden from functions definition and usage

Poor control structures and poor logic can produce inefficient/endless computations

2023-24 lesson 1Methods in Computer Science education: Analysis

Other analysis methodologies

Object-oriented
Define classes of objects responding to requests and interacting with each other. Try to
reuse/standardize behaviours/definitions to simplify interoperability of objects and algorithms.
Find common procedures but allow for exceptions.

Event-based (GUI, e.g. see Scratch, Snap, AppInventor)

Describe how a collective set of objects should react to external events

Declarative/Logic-based (Prolog)

Describe relations among data and how more complex properties can be derived from
simpler ones. Let the system find a solution plan.

Bottom-up
Start from small reusable data manipulations and build more complex ones.
Or extend a simpler program to add new functionalities.

2023-24 lesson 1Methods in Computer Science education: Analysis

How other subjects can benefit
from Computer Science methods?
Exploration of laws and rules by modelling and simulation

Physics, Combinatorics, Chemistry, Geometry, ...

Exploration of creativity by building computational models
Language generation and analysis, Music generation, ...

Algorithmic description of problems/solutions or of rules
Math simplification, Language analysis

Learning a methodology to analyse problems

Data representation: a way to capture regularity and exceptions

Randomness: a tool to explore creativity (and mimic intelligence)
Simulation of Darwin’s evolution, creation of artistic paintings/3D scenery

2023-24 lesson 1Methods in Computer Science education: Analysis

What approaches can make easier learning C.T.?

Syntax is considered one main initial problem for younger kids

We could completely remove the syntax by using visual programming
Joining snap-on blocks (Blockly, Scratch, Snap! and similar)

Drawing flow charts to describe the control flow (Flowgorithm)

Drawing data-flows to describe the data flow (LabView and similar)

Editing multiple agent properties/predefined behaviors (GameMaker, Alice, ...)

Or simplify the syntax to make the programs easier to read/write
Logo, Smalltalk, Python, Ruby, Scala, (Prolog), Occam, …

Helping the student to build a mental model of what happens

Visualizations of the inner program status (variables, execution, debug)

Visualization of external effects (simulated agents moving around, robots)

2023-24 lesson 1Methods in Computer Science education: Analysis

Educational Learning environments

In the rest of the course we will:

Analyse environments/languages built for learning how to program
Visual-based: Snap!, Scratch, Blockly, OpenRoberta, AppInventor …
Logo-based: NetLogo, LibreLogo
Scala-based: Kojo
Logic-based: Prolog
Flowchart-based: Flowgorithm

Data-flow based: LabView, ...

We will build an example learning unit within the environment/language

We will find and analyse learning experiences from around the world

You will suggest/discuss/plan new learning units

You will build and present the learning units designed

https://en.wikipedia.org/wiki/Category:Pedagogic_integrated_development_environments

2023-24 lesson 1Methods in Computer Science education: Analysis

How others are teaching C.T. around the world?

Visual programming
Scratch Blockly Snap! AppInventor OpenRoberta

Programmareilfuturo.it code.org …

Commercial

Microsoft Minecraft Education edition education.minecraft.net

Apple Swift Playgrounds (on iTune) www.apple.com/swift/playgrounds

Wolfram computationalthinking.org

Less knowns approaches
Flowgorithm, LabView, NetLogo, Alice ...

http://Programmareilfuturo.it/
http://code.org/
http://education.minecraft.net/
https://www.apple.com/swift/playgrounds/
http://computationalthinking.org/

2023-24 lesson 1Methods in Computer Science education: Analysis

Course prerequisites

You MUST be fluent in at least two programming languages

Python? C/C++? Java? Pascal? Ruby? Lua?
Prolog? Scala? JavaScript? Assembly?Go? ???

You MUST be fluent in at least two programming paradigms/styles
Procedural? Object Oriented?
Declarative/logic? Functional?
Data-flow? ???

Please fill the on-line questionnaire

 http://bit.ly/CSedu-q1

http://bit.ly/CSedu-q1

2023-24 lesson 1Methods in Computer Science education: Analysis

Course methodology

The course is very hands-on, we will

Use many learning environments, visual and textual

Analyse their strengths/weaknesses w.r.t. learning Computational Thinking

Analyse learning units built by others (including your peers)

Design and Build complete functioning learning units

We focus ONLY on creating interdisciplinary learning units

To apply the Computational Thinking methodology to other fields

To show that C.T. helps understanding/exploring the problem to be solved

And thus to constructively solve the interdisciplinary task

Comments/suggestions/improvements/critiques are WELCOME

2023-24 lesson 1Methods in Computer Science education: Analysis

Course assessment

You will build 3 new interdisciplinary learning units in 3 different
learning environments/systems of your choice

At most 2 LU can be made with block-based systems
You can work either alone or in small groups (max 2). Groups are expected to
produce more complex learning units. The group work done should be clearly
split among the participants (“who did what?”)

Learning unit presentation and discussion
You will present and discuss with the rest of the class your learning units,
describing motivations, methodologies, features, experienced problems,
possible problems for application in class and proposed solutions

“Net-borrowed” learning units must show what is your contribution
(but, anyway, I will ask for improvements / heavy modifications)

2023-24 lesson 1Methods in Computer Science education: Analysis

Schedule of the course

24 lessons: (3+2 hours): each Monday BRING YOUR LAPTOP for lab work

- 7 Lessons

- Discussion of 1st LU ideas

EASTER

- Present/deliver your 1st Learning Unit

- 7 Lessons

- Discussion of 2nd LU ideas

1° of May

- Present/deliver your 2nd Learning Unit

6 Lessons

- Discussion of ideas for your 3rd Learning Unit

Exam: discuss/present your 3 LU (by appointment on Zoom)

2023-24 lesson 1Methods in Computer Science education: Analysis

How I will assess your Learning Units:
1) WRT the chosen interdisciplinary problem

MUST BE interdisciplinary = solve a problem in non-CS subjects
 (games or quizzes are FORBIDDEN!)

Deliverable: 1 PDF report + 2 programs

PDF describing the interdisciplinary topic and the Learning Unit
Prerequisites, motivation and placement in the course/school curriculum
Describe the organization of the lesson, the topic, the task to be solved
Plan for a simpler problem for less skilled groups (a simpler “plan B” task)

REMEMBER: You are the expert and will answer to students

Choose the interdisciplinary topic wisely and study it very well
(and prove it to me)

2023-24 lesson 1Methods in Computer Science education: Analysis

2) WRT Computational Thinking/Implementation

The implementation MUST use some data structure declaratively
This to show that the “knowledge” of the solution can be extended easily

Describe the LU Prerequisites and Placement wrt to programming knowledge
Be precise, tell me what programming topics should already been known to produce the solution

Describe the data available, the data computed, the algorithms/interactions,
the libraries given to the students

Explain WHY did you chose that development system?

Try to “hero” (use in a prominent way) the system’s best features

Describe the assessment grid ahowing how you will grade the programs
Build an example of Minimal (6/10) and Maximal (10/10) implementations

REMEMBER: You are the expert and must show your solution

I want beautiful well-modularized and documented code

2023-24 lesson 1Methods in Computer Science education: Analysis

Learning Units assessment grid

LU requirements If missing

Elegant and well modularized code -1

Easily extensible data structure (declarativeness) -1

Interdisciplinary problem (no CS, yes other topics) FAIL

Right pre-requisites both on the interdisciplinary topic and the programming part -1

Assessment grid -1

Use well the peculiarities of the chosen tool -1

Too simple -2

Non original -2

Refused to do the requested changes -2

Good PDF report FAIL

Bonuses

Prolog (well done, declarative, with deductions) +1

Labview (well done, data-flow approach) +1

Developed alone +1

2023-24 lesson 1Methods in Computer Science education: Analysis

Course site (on twiki)

Fill the on-line questionnaire http://bit.ly/CSedu-q1

 (it takes just 2 minutes)

Subscribe the Telegram group (just for emergency comms.)

sterbini@di.uniroma1.it (for comments/suggestions)

Contacts

http://bit.ly/CSedu-q1
https://t.me/+09OKEJ6bgko0ZjVk
https://twiki.di.uniroma1.it/twiki/view/CSeduA
http://bit.ly/CSedu-q1
mailto:sterbini@di.uniroma1.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

