
Code.org curricula (Blockly-based)

 Andrea Sterbini – sterbini@di.uniroma1.it

https://creativecommons.org/licenses/by-nc-sa/4.0
mailto:sterbini@di.uniroma1.it

2023-24 code.org

Code.org

Built with Blockly: a JavaScript library for visual languages

Code.org (and AppInventor.mit.edu)

Fine-grained activities within a CONSTRAINED environment for a C.S. curriculum
(initially less freedom … later full environment)

Initial language
NO local variables
NO personal agent attributes
Procedures (NO return value)

Possibility of static data type enforcement with visual clues
Puzzle-like connectors with different shapes and colors: Actors, numbers, text, booleans

https://developers.google.com/blockly
http://code.org/
http://AppInventor.mit.edu/

2023-24 code.org

Complete curriculum
from Elementary to High school (USA)

A course tailored to students of each year:
E.g. Course D for 3rd grade (K3): algorithms, nested loops, while loops, conditionals, and events.
Beyond coding, students learn about digital citizenship.

Both “unplugged” and programming activities are used

2023-24 code.org

Example: Course D for 3rd grade (K3 = 8-9 y old)

Topic: DIGITAL CITIZENSHIP
Lesson 1: Password Power-up (Common Sense Edu. | Unplugged)

Stronger, more secure online passwords are a good idea for everyone. But how can we help kids create better
passwords and actually remember them? Use the tips in this lesson to help kids make passwords that are
both secure and memorable.

Topic: SEQUENCING (algorithms)
Lesson 2: Graph Paper Programming (Unplugged)

In this context-setting lesson, students use symbols to instruct each other to color squares on graph paper.
By "programming" one another to draw pictures, students get an opportunity to experience some of the
core concepts of programming in a fun and accessible way.

Lesson 3: Introduction to Online Puzzles (Sequencing | Debugging | Loops |
Angry Bird | Collector | Artist | Harvester)

In this skill-building lesson, students will practice their sequencing and debugging skills in maze puzzles.

2023-24 code.org

… continue SEQUENCING

Lesson 4: Relay Programming (Unplugged | Relay
Programming | Algorithms)

This context-setting lesson will begin with a short lesson on debugging
and persistence, then will quickly move to a race against the clock as
students break into teams and work together to write a program one
instruction at a time.

Lesson 5: Debugging with Laurel (Debugging | Bug | Collector | Laurel)

In this skill-building lesson, students will practice debugging in the "collector"
environment. Students will get to practice reading and editing code to fix puzzles
with simple algorithms, loops and nested loops.

2023-24 code.org

Topic: EVENTS

Lesson 6: Events in Bounce (Event | Bounce)

In this context-setting/skill-building lesson, students will learn what events are and how

programmers use them in video games. Students will build a game that they can customize with

different speeds and sounds.

Lesson 7: Build a Star Wars Game (Events | Star Wars)

In this skill-building lesson, students will practice using events to build a game that they can share.

Lesson 8: Dance Party (Timed Events | Music)

In this skill-building lesson, students will program an interactive dance party.

2023-24 code.org

Topic: LOOPS

Lesson 9: Loops in Ice Age (Loops | Scrat | Ice Age)

This context-setting/skill-building lesson will quickly introduce students to loops.

Lesson 10: Drawing Shapes with Loops (Loops | Artist)

This skill-building lesson builds on the understanding of loops from the previous lesson and
doubles as a debugging exercise for extra problem-solving practice.

Lesson 11: Nested Loops in Maze (Nested Loops | Loops | Bee | Maze)

In this skill-building lesson, students will learn how to program a loop inside of another loop.

2023-24 code.org

Topic: CONDITIONALS

Lesson 12: Conditionals with Cards (Conditionals | Unplugged)

In this context-setting lesson, students will write conditional (if/else) statements to state the rules of
simple card games.

Lesson 13: Looking Ahead with Minecraft (Conditionals | Minecraft)

This skill-building lesson gives students the chance to practice concepts that they have learned up to

this point and get their first experience with conditionals!

Lesson 14: If/Else with Bee (Conditionals | Bee)

In this skill-building lesson, your class will continue to code with conditionals, allowing them to write
code that functions differently depending on the specific conditions the program encounters.

2023-24 code.org

...continue CONDITIONALS

Lesson 15: While Loops in Farmer (While Loops | Loops | Farmer)
In this skill-building lesson, students will be working to fill holes and dig dirt in Farmer,
but they will not know the size of the holes or the height of the mounds of dirt. To solve
these puzzles, students will use a new kind of loop.

Lesson 16: Until Loops in Maze (Until Loop | Maze | Angry Bird |
Zombie)

In this skill-building lesson, students will learn about "until" loops. Students will build
programs that have the main character repeat actions "until" they reach their desired
stopping point.

Lesson 17: End of Course Project (Play Lab | Event)
This capstone lesson takes students through the process of designing, developing,
and showcasing their own projects!

2023-24 code.org

Visual language
User interaction and common features

Visual choosers to simplify input: Sprite’s “costumes”,
colours, angles, positions, sound/music, …

Typed connectors: positions, sprites,
numbers, conditions, text

Extensible if (if, elif, elif, …, else)

Counted loops (with counter)

Show corresponding JavaScript code

2023-24 code.org

Made with Blockly

A JavaScript library to build visual languages (initially by Google)

Easy way to define new types of blocks with:
Typed inputs (int, string, object, list, boolean, …) and outputs
Conversion of the resulting code to many programming languages
(JavaScript by default, but also Lua, Python, PHP, Dart, …)

You can also define new blocks visually by using Blockly

The resulting JavaScript can be evaluated to interact with the page
Labyrinths, Harvesting robots, Games, Simulations, …

Used in: code.org, appinventor.mit.edu, programmailfuturo.it, open-roberta.org,
and many more …

http://code.org/
http://appinventor.mit.edu/
http://programmailfuturo.it/
http://open-roberta.org/

2023-24 code.org

A lot of different programming environments!

2023-24 code.org

And many more …

2023-24 code.org

Environments: Artist: turtle graphics

Single program, no events

Single agent (Pen), NO concurrency/events

New: PARAMETRIC procedures

Automatic redraw/run when parameters change

With some examples of editable procedures/drawings

RECURSION! (demo)

Useful tricks:
- pen-up => set alpha = 0
- pen-down=> set alpha = 255
- or just use “Jump”

https://studio.code.org/projects/artist/c99fed25Bi00KrAD-NyQuwGdHv87pEv3ZVed29x2G10

2023-24 code.org

 Sprite Lab: multiple interacting
Actors

Single initial program (e.g. to create Sprites and scene)

(Multiple) actors reacting to simple events (but NO messages)

Concurrent execution of events

Multiple threads for same event (demo)

Simple procedures (without parameters!)

Simple “behaviors” common to all agents

Fixed Sprite properties

Global variables

NO lists

https://studio.code.org/projects/spritelab/L3vsAG828j1UJATSKUSAAxTP4atS438MYDXL3xruA1c/edit

2023-24 code.org

Pre-reader versions!

Artist: single program, NO events, NO variables, NO if-then-else, fixed
angles/distance, draw/jump/stickers, fixed loop

Play Lab: behaviors attached to agents (when up/touched/hit)
 NO variables, simple commands, NO if-then-else, fixed repetition

2023-24 code.org

 Dance Party: music-sync
animation
Animated “dancers” with dance moves (clap, dab, gagnam, …)

Background effects (rain, disco lights, …)

Initial Setup + Events: keyboard / timing / music (demo)

Music-related events/conditions
if dancer is clapping/if measure>8
move dancers wrt bass/mid/treble

Dance-related conditions (if doing “clap”)

Concurrency (multiple identical events)

NO messages (demo)

Procedures (NO functions)

https://studio.code.org/projects/dance/MeBIvbzU0-xHdkcAdM1pgJFTKEj5i13DgjfhaKooRis
https://studio.code.org/projects/dance/bPi-W_AvHCCBSkWqUcXtSRkDJ7T-f4pRgMOMf6m4iWY

2023-24 code.org

 Game Lab: build a “game”
app

You implement a single function called by the game refresh loop
(NO Events!!!)

Animated sprites + Grouped sprites/movement

Drawing primitives

Sprite interaction primitives
(collide, displace, bounce …)

Variables as game status
(positions, points, lives)

You must implement ONLY the “paint”
function to update the screen

 (demo)

https://studio.code.org/projects/gamelab/A5s1TSOpvyd3DyeMMDlFFEyEvVuXKut1Bj9OD_SVBs0

2023-24 code.org

 App Lab: build a “phone-like”
app
Graphic editing of the App GUI (buttons, fields, labels, …)

Setters/getters of all App widgets properties

Full JavaScript-like visual syntax
Full functions (args, local vars, return)

DATA store (dictionary OR tables)

Turtle graphics and Canvas

New: DEBUGGER!

2023-24 code.org

App Lab Events

Events:
GUI: onEvent(widgetId, event, callback)
Data: onRecordEvent(table, callback(record, event))
Timers: setTimeout(ms, callback)

timedLoop(ms, callback)

Callback functions (demo)

https://studio.code.org/projects/applab/kN7Z1hLpUIyw6NMC6Xg3N4jG5r8WhBNx7xo39r-ocOA

2023-24 code.org

App Lab: custom libraries and datasets

You can export/import libraries of functions/blocks
Apart from remixing the teacher initial project, you can use/give to students external javascript
libraries

You can export/import custom datasets
It’s relatively easy to prepare data-analysis projects.
Students can either use open-data or collect data for further analysis

2023-24 code.org

Many courses available at all levels

https://studio.code.org/catalog

2023-24 code.org

Topics covered

Grade: from Kindergarten to 12

Duration:
Lesson (1.5 hours), Week, Month, Quarter,
Semester, Year

Device:
Computer, Tablet, Chromebook, Mobile,
No device

Curriculum:
AP CSA,
CS Connections,
CS Discoveries,
CS Fundamentals,
CS Principles,
Hour of Code

Topic:
Interdisciplinary

Art and Design

App Design

Artificial Intelligence

Cybersecurity

Data

Digital Literacy

Games and Animations

Internet

Physical Computing

Programming

Web Design

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

