
MIT App Inventor 2

 Andrea Sterbini – sterbini@di.uniroma1.it

https://creativecommons.org/licenses/by-nc-sa/4.0
mailto:sterbini@di.uniroma1.it

2024-25 AppInventor2

App Inventor 2: building simple Android apps

Built with Blockly http://ai2.appinventor.mit.edu

Build, compile, and deploy Android App on the phone

 on IPhone also (but you cannot package apps yet)

Automatic visualization of changes while editing, on Phone or on Emulator

Install AI2 Companion App

Run the Companion and connect by QR or code or USB

Apps can be Packaged and installed stand-alone on the phone (Android)

https://developers.google.com/blockly
http://ai2.appinventor.mit.edu/
https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3

2024-25 AppInventor2

Special tricks

Use an emulator instead than a phone

 Genymotion for Windows, MAC or Linux

 Note: in Genymotion install the Arm Translation Toolkit

 BlueStacks for Windows or MAC (faster)

BEST: share your phone screen on PC with scrcpy (via ADB debug)

via USB or Wifi (if your phone allows it)

Or you could use a LOCAL server to avoid network problems!!!

AI2Offline [2024] (with minor issues in MacOs)
(or you can compile and run it from http://appinventor.mit.edu/appinventor-sources)

https://www.genymotion.com/
https://github.com/m9rco/Genymotion_ARM_Translation
https://www.bluestacks.com/
https://github.com/Genymobile/scrcpy/releases
https://sourceforge.net/projects/ai2offline/
http://appinventor.mit.edu/appinventor-sources

2024-25 AppInventor2

Web-based GUI editor

W
I
D
G
E
T
S

WIDGET
TREE

P
R
O
P
E
R
T
I
E
S

FILES

GUI

EDITOR

2024-25 AppInventor2

New
interface

Cleaner

More devices

More properties

AI chatbot

2024-25 AppInventor2

Code editor

CA
TE
GO
RI
ES

WID
GET

TREE

FILES

BLOCKS
CODE

PROCEDURE DEFINITION

EVENT
CALLBACKS

2024-25 AppInventor2

App structure

One separate “screen” for each phase (config, login, play levels, results …)

Screens are independent and DO NOT share data or code between them

(but you can use a local TinyDB key/value DB component that allows exchanging data)

Or you can pass/retrieve some text when switching to another screen

Different Apps are independent and DO NOT share data or code (Android)

(but you can exchange data by using an external WebService + WebDB/CloudDB or with a
Spreadsheet)

Resources (video, audio, files, images ...) are bundled in the app apk

Practical Limit: 10 screens max

To mimic many screens and share code between them you can hide/show widgets in the
same screen by leveraging the widget tree (you just hide/show the parent widget)

2024-25 AppInventor2

Many widgets/objects available

Widgets: Buttons and other input fields
Layout: Automatic layout constraints (horizontal, vertical, grid ...)
Media: Sound, Movie, Camera, SoundRecorder, SpeechRecognizer,
 TextToSpeech, Translator, VideoPlayer, …
Drawing: Canvas, Sprite, Ball
Maps: Maps, Polygonals, Markers, FeaturesCollection (from GeoJson), …
Charts: Chart, ChartData2D, TrendLine, … (NEW!!!)
Data Science: Regression, AnomalyDetection, … (NEW!!!)
Sensors: Accel, Temp, Baro, Gyro, Barcode, Pedometer, NFC, …
Social: Contacts, PhoneCall, PhoneNumber, Email, Twitter, Sharing,
Texting
Storage: TinyDB, TinyWebDB, CloudDB (Redis), File,
 DataFile (CSV/JSON), Spreadsheet
Connectivity: BT Client, BT Server, Web, Serial, ActivityStarter (start other apps)
Lego: NXT, EV3

http://ai2.appinventor.mit.edu/reference/components/

2024-25 AppInventor2

New Widgets/Components !!!

Charts: Chart (Line, Area, Scatter, Bar and Pie)

 ChartData2D (XY plots)

 TrendLine (Linear, Quadratic, Logarithmic, Exp)

Data Science: Regression (produces a TrendLine)

 AnomalyDetection (abnormal = Z-score above a threshold)

Storage: DataFile (CSV or JSON → table)

 Spreadsheet (on Google Drive)

Experimental: ChatBot (OpenAI ChatGPT or Google PaLM),

 ImageBot (OpenAI DALL-E),

 FirebaseDB (Google Cloud DB)

2024-25 AppInventor2

Data types

Numbers, Strings, Lists, Lists of Lists, Dictionaries, (Booleans)

All interface widgets are objects with:

Predefined Properties (pre-set in the IDE, or read/changed by program)

Events that they can generate on interaction

Methods that can be called

Some objects are not visual (i.e. BluetoothClient, File, DBFile, Sound, …)

Computed results are shown with a “puzzle” connector (ovals in Scratch)

Some static data type enforcement is present (is checked but not shown)

2024-25 AppInventor2

NEW data types and methods

Text: obfuscated text

Lists: foreach iterator

 CSV <=> list of lists

 list of pairs as a dictionary (FIRST match!)

Dictionaries!

with key/value enumerator

with path access to inner values

 XML => convert to dictionary

JSON => convert to dictionary

2024-25 AppInventor2

(Visual) Language style / Blocks symbology

Inline or external inputs

Extensible blocks to allow for many inputs

Text-based blocks (no pre-scholar)

“Function-like” blocks (with “result” plug)

“Procedure-like” blocks (without “result” plug)

2024-25 AppInventor2

Code style: event-based – function-based modularization

You implement mainly Events, Procedures and Functions

GLOBAL variables are defined outside any Event/Function/Procedure

You can define variables LOCAL to the procedure/function

Can be changed/used only within their “scope bracket” (or as a return value)

This allows a “functional decomposition” style
(but no lambdas/function passing)

Limited support to debugging
You can “collapse” the functions/events/procedures You can “Do it” a block and show the
result
You can enable/disable some blocks You can “comment” your blocks
Warning and Errors appear as yellow or red triangles
All changes are automatically reflected in the Appinventor Companion app

http://ai2.appinventor.mit.edu/reference/other/testing.html

2024-25 AppInventor2

Execution model:
event-based programming WITHOUT concurrency

NO multiple concurrent code for same event

NO message passing

Almost all objects generate events when interacted with

E.g. “When the screen changes”, “When the button is clicked”,
“When got/lost focus”, “Before/After choosing an item”,
“When the screen orientation is changed”, “When the file has been read”
”When the web page has been retrieved”, “When the ball hits a border”,
”When the icon is dragged” …

2024-25 AppInventor2

Asynchronous protocols!

Asynchronous protocols are split in 2 or more phases
E.g. “Ajax query to get a web URL”

“When the response arrives” events

This to remove busy wait and to get an async interaction
To behave differently for different cases, you can use globals as semaphores

PARTIAL object orientation (no way to add properties or to clone)

2024-25 AppInventor2

How to enable students’ cooperation

[Kate Feeney's MA thesis at the Mills College]

Ask each student to implement just one screen of a complex App

Start with a template App (just 10 empty screens and media files)

Students should agree on data interactions, data formats and names
Common resources/files can be shared among screens
Communication between screens is handled by TinyDB objects

At the end you merge all the screens made by the students into a single App
(with the AI2 Project Merger Tool)

Homework: build an app/game cooperatively

https://appinventor.mit.edu/explore/sites/all/files/Resources/EncouragingCollaborationFeeneyThesis.pdf
https://appinventor.mit.edu/explore/resources/ai2-project-merger

2024-25 AppInventor2

Other ways to organize collaboration projects

Multiple interacting applications can communicate through

- Bluetooth (direct communication + protocol implementation)
 (no async communication)

- Wifi + CloudDB (central coordination by data sharing)

Examples:

- Collect and map features on the field in real time
 (geolocalized data collection)

- Collect data from sensors and visualize them in real time
 (physics experiments)

- Collect data and do data-analysis and visualization
 (statistics)

2024-25 AppInventor2

Extensions (written in Java/native)

ImageProcessor: weighted combination of images pixel-by-pixel

VectorArithmetic: vector sum

SoundAnalysis: pitch decoder (note recognition)

Posenet: body pose estimation in a video
 (key joints and eyes/nose of a person)

BluetoothLE: Bluetooth Low Energy

ScaleDetector: pinch zoom/reduce interaction

Look: classify images/videos

ImageClassifier: classify images/videos with your model

And MANY MANY MANY MORE!

https://puravidaapps.com/extensions.php

2024-25 AppInventor2

Computational Thinking topics

Algorithm, structured coding, functions, local variables, data structures,

types (enforced but not visually highlighted)

GUI programming, Event programming

NO simple concurrency (all events are single flow of computations + async)

More limited and easier than Snap! More powerful than Scratch

Mobile games

Multiplayer apps (connected by WebDB or Bluetooth)

Cooperative development!

2024-25 AppInventor2

Interdisciplinary topics ideas

So many sensors on a phone!!! → → Physics experiments!
 Data collection!

Serial communication with Arduino → → Home automation, robotics?

Protocol simulations with Bluetooth → → Networks

NFC or QR codes → → tangible interaction? Tagged info?

Maps, GPS, Maps Annotations → → Geography, History,
 Geotagged data collection?

Media → → Art, Literature

Text to Speech/Speech recognition → → 2nd Language?

Lego EV3 → → Robotics? Physics? ….

… please suggest!

2024-25 AppInventor2

PLENTY of alternative systems inspired/extending AppInventor

KODULAR.io

NIOTRON.com

ANDOIDBUILDER.in

THUNKABLE.com

APPRAT.io

https://alternativeto.net/software/app-inventor-for-android/
http://KODULAR.io/
http://NIOTRON.com/
http://androidbuilder.in/
http://THUNKABLE.com/
https://apprat.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

