Dataflow programming languages: LabVIEW

Andrea Sterbini - sterbini@di.uniromal.it

https://creativecommons.org/licenses/by-nc-sa/4.0
mailto:sterbini@di.uniroma1.it

Data-flow: interconnected functional units

Programs are made of functional units connected by wires

- wires represent data exchanges (i.e. variables)
- they are typed (a different colour/shape for each wire)

- multiple data can be aggregated in a single BUS (i.e. a record / struct)

- each functional unit has a default GUI for testing its 1/O
Modularity

- functional units can be defined and reused

- circuits/networks can be packaged as new functional sub-units

2023-24 LabView

Created in 1986 by National Instruments to interact with and manage digital
data-acquisition electronics and control systems

Modelled over the circuit design and testing metaphor (you draw a circuit)

Each functional unit in the graphic language runs as soon all its input data are
available

Multiple cores and threads are used to schedule the parallel execution of
multiple active units

Programs are compiled into an intermediate “G” language
(but can also be compiled to native code)

You normally (need to) add explanation boxes to document your ideas

Free LabView Community edition available for personal usage

2023-24 LabView

https://en.wikipedia.org/wiki/LabVIEW
https://www.ni.com/it-it/shop/labview/select-edition/labview-community-edition.html

Circuit metaphor

PROGRAM

VARIABLE

TYPE

FUNCTION

ARGUMENTS

RETURN VALUEs

IF-THEN-ELSE

LOOPS

CONCURRENCY

==> CIRCUIT

==> WIRE

==> WIRE COLOUR (or type)

==> CIRCUIT COMPONENT (defined with a sub-circuit and its GUI)
==> INPUT CONNECTORS (input widgets in the GUI)

==> OUTPUT CONNECTORS (display widgets in the GUI)

==> MULTIPLE CIRCUITS (one per condition, but with same 1/O wires)
==> REPEATING CIRCUITS (with stop & state connectors)

==> IMPLICIT in the data-flow execution (run when inp

2023-24 LabView

Many numeric and signal
processing elements

Multiple values can be
bundled in buses

Wires have types

Add

Subtract Multiply Divide

Quotient &

Increment

Comparison

—
—

<<

v/
v/
v/
v/
v/
¥

Greater or
Equal?

Equal? Mot Equal? Greater? Less?

W/
W/
v/
v/
v/
v/

Less or
Equal?

Equal to 07 Mot Equal to Greater Than Less Than 07 Greater or Less or Equal
07 07 Equal to 07 to 07
= B B = B =
MaM/Path/... Empty Array? Empty String Decimal Hex Digit? Octal Digit?
or Path? Digit?
=
White Space?
Constants

| Manipulati...

Each functional unit has a default GUI to test it

many widgets are available to personalize it (active or read-only)

CTEXTOC

TEXTZ -~~~

RESULT
T

. = o - - APDY MULT - - - - - - - D -------------------
L,I..D.:l'l.':::::Ii-:::::::::::::::::::::::::::::ﬁ

"Idopiitdations * T T " T T T T T * % s + = = = = s = & = = . = = = o= o= s e o= e os o= e o=
Lo oo S
B R L R L Y L L L L e L e e e e e e e
4] : 50 100 150 “200 250 “300 350 400
STOPAT toeNpEX
o L Lo
| it I T e T T S B R S P 200

o 50 100 - 150 500 " ot ot v o- s P
................................ “I DE} - - .3{]{}. - - - - .
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ?,%'.'ZZZZZZZZ
............................... S . . e, L L L L

2023-24 LabView

Data types describe what a wire could transfer

(i.e. the content of the variable)

Many numeric types (to interface with hardware and to do signal processing)

Strings Data Types

B

)

Boolean Array Cluster Error

Arrays, records, structs
(Clusters)

Timestamp Path Waveform Classes Variant Comparison]

Classes

0|

Data Value
FReference

2023-24 LabView

Control structures

and scope

Enum Case Structure

| “Option 1"

< pem——

: his diagram executes if the Case Selector value is "Option 1°.

Control structures are represented as boxes

- on the border there is a conditional | control input connector

- the box is the equivalent of a group of parentheses (one per case)
- multiple cases (if-then-else, switch-case) become “pages”
- the box title contains the options of the case / condition

- all “pages” share the same external inputs / outputs

- control values (e.g. index) -

are available in all pages

There are also boxes for
formulas or
external code (ASMICIC++)

Program Flow

For Loop

1 1
1 1
“~ -

Disable
Structure

Wait Until...

Multiple

While Loop

5

Timed Loop

©

=1

Elapsed
Timer

Case
Structure

Timed Loop
Utilities

&

Call Chain

(%]

Event Loop

T

2/

Select

K¢

Feedback
MNode

1

Seguence
Structure

o]
L

Timer Count

ﬂl

Synchroniz...

 l

In Place Ele...
Structure

Execution
Control

While loop example

The dice unit generates floats e -
fromOtol . @ ‘every second |

'a random number between 1 and 6 is generated [/

We multiply by 6 and take the [—]
ceiling ﬁ P> [F>—s @EFl) Current Die Roll

We stop as soon we see a 6 ‘ @

The counter i starts from O counter 'as soon we get 6 the loop is stopped |~
(i} +1 Num rolls to get 6

‘and in the meantime we count how many loops we got |~

2023-24 LabView

Recursion? YES

Define a block as “reentrant” (i.e. allowing multiple parallel copies)
Then you can call it inside the same block or one of its sub-blocks

<4 False w p» & N

=]
N @R | 3=5
Factorial x > us2 |
— 1 (1) L
: | 120|
- True w
N @

Examples: Factorial, Fibonacci

NOTE: you can define “code” blocks in C or other languages

or call external DLLs

Factorial.vi
Fibonacci.vi

Concurrency? YES (depends on how parallel is your circuit)

Synchronization
- a block starts computing when all its input data is available
This produces an inherently parallel data-flow implementation

- linked units must run sequentially because of data dependency
- NON-linked units run in parallel (emulated or on available cores)

Sequencing constraints can be implicit or explicit
- implicit: from data dependencies (links induce time order)

- explicit: you add time dependencies without data exchange
with the construct below

OO0 O000000000

OO0 0000000000000 00000000000000000000000000000-n0n0

Parallel For Loop

Parallel Instances 10000 [N] ctual Inctamces
Chan =3 .
Ho "] P ired, th ber of 7|
o *Histo is unwired, the number o
= - workers will be the number of - Chart
B processors in your machine. 132 |

o o e o o o o o o o Y] D000 o0o0o0o0o0o0o0o0o0o0ooDo0o0o0o00o0o0o0Doooooo0o0oo0o0o0o0o00Dooononoo =!:i!I|=H!I

LabView programming style

Data-flow visual design
Visual construction of the data-flow circuit diagram
Visual test of the diagram
all blocks have their GUI showing IN/OUT data
probes can be added to show jnternal wires’ values and to plot changes vs time

Inherently parallel (you just forget about sequentiality constraints)
Object-Oriented (classes)

Interaction with other systems:
- Function blocks for data math manipulation
- Code blocks for special algorithms in C++ or Fortran

- Many libraries for Statistics, Signal analysis/manipulation, Math 2023-24 LabView

Debugging

Visual tracing of data on wires

GUI for blocks IN/JOUT

W
RN

a0
N
T as

~~ 30

Thermostat

T
R ! B

45 50 55

r,f

60 .7
65 -,
7077
7575
80
a5—
002

a5

|:| Heating
|:| Cooling
|:| Waiting

While Program Executes:

Goal temperature changes

are only

registered in the wait for event state.

stat Control

Awaiting new goal temperature

Adjusting current

temperature

Goal Temperature

so|2)

Current Temperature

20|

Probes on wires show as widgets on GUI
Values are shown on wires

~ _ - :]

. Exit
100_ <

~ I Goal Reached [|

[T ———— = [

Factorial > 36288

4[]— 362880

2628800

| false|":_-;z|r}

@lfensel (oo} 100 Im'i
1 Hestj
@ Taloe [Talse |- E;,m false &8 [true|trud true |- itrue s

false fals4 false |-

Waiting
| 1 DDO E' Transition Values E. falze |alse
Transition Values - = . .:Wl Error ; _ B -
initizlize & | Iniﬂ Adjust Te...| 0+ Adjust Te... L Adjust Te... [S Adj) Adjust Te... djust Te...] =

23-24 LabView

= | false

LabView for teaching Computational Thinking?

PRO CON

- radically different way to “think” a program - radically different way

perhaps suited for deaf/IDSA students? to “think” a program

- some algorithm is hard

o to map to circuits
- some problems map naturally to circuits (e.g. symbolic problems,

(e.g. signal analysis/generation) text analysis, ...)
- easy definition of feedback control systems

- implicit concurrency

- easy interaction with robots or Arduino

- compiled programs can run inside Lego EV3
or other microcontrollers

TLDR: good for electronic/technical schools 2023-24 LabView

DEMO

2023-24 LabView

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

