
Prolog (part 2)

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

2022-23 Prolog-2

Recall:

FACT

 term(argument1, argument2, arg3 …). % rule always true

RULE

 head(arg1, arg2, …) :- % to prove this head
 body1(…), % we must prove this
 body2(…), % AND this
 … % …

 bodyN(…). % AND this
 % (SEQUENTIALLY)

2022-23 Prolog-2

Details on rule execution

To prove a predicate (e.g. a prolog term) we must search for either:

1) a rule with the same head (should unify with the term to prove)
2) or a fact with same term (which also should unify)

i.e.:

- the term functor must be the same
- the number of arguments must be the same
- each argument must recursively unify with the corresponding argument

This is generally used to selectively match the predicate clauses

Arguments can be used both as Input or as Output depending on their binding

There is no return value, you can use any argument as output

2022-23 Prolog-2

Lists (dynamic, heterogeneous)

List = [one, two, three, four] % list syntax

[Head | Tail] = List % how to extract the first element
Head = one % fails if the list is empty
Tail = [two, three, four]

[First, Second | Rest] = List % extracting first and second element
First = one % fails if the list has less than 2 elements
Second = two
Rest = [three, four]

EmptyList = [] % the empty list

is_empty([]). % test for empty list through unification

length([], 0). % base case: an empty list has length 0
length([H|Tail], N1) :- length(Tail,N), N1 is N + 1. % recursive case: compute the list length

2022-23 Prolog-2

Predicates on lists

% list concatenation/split (if used backward)
append([], B, B). % B if A is empty
% else attach the first in front of the result of appending B to the rest of A
append([Head | Tail], B, [Head | C]) :-
 append(Tail,B,C).

% member check/generation
member(A, [A | _]). % A is member if is the first element
member(A, [_ | Tail]) :-
 member(A, Tail). % or if is member of the rest
 % NOTICE: member should fail if the list is empty

2022-23 Prolog-2

Functional programming

Predicates can be used as if they were functions or to test values
You just add an argument to collect the result

square(X, Result) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test=compute+unify

You can map functions over lists
List = [1, 2, 3, 4], maplist(square, List, List1).

=> List1 = [1, 4, 9, 16]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).

=> Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).

=> Odd = [1, 3] Even = [2, 4]

2022-23 Prolog-2

How partition could be defined

part(_Predicate, [], [], []). % if there are no elements we produce two empty lists

part(Predicate, [H|T], [H|T1], T2) :-
 call(Predicate, H), % if the H satisfies the Predicate
 part(Predicate, T, T1, T2). % H is added in front of the first list

part(Predicate, [H|T], T1, [H|T2]) :-
 not(call(Predicate,H)), % else
 part(Predicate, T, T1, T2). % H is added in front of the second list

Notice: this predicate can be used both to partition and to join list … why?

2022-23 Prolog-2

What if predicates are used “backward”?

% find a list X that is partitioned this way
part(is_odd, X, [1,3], [2,4]).

 [1,3,2,4] ; [1,2,3,4] ; [1,2,4,3] ; [2,1,3,4] ; [2,1,4,3] ; [2,4,1,3] % 6 possible lists!!

% What if we use maplist “backward”?
maplist(square, X, [1, 4, 9]). % is cannot be used “backward” in square
 Arguments are not sufficiently instantiated
 In: [3] 1 is _1680*_1682
% We need a better definition of square(N,N2)
square(N, N2) :- nonvar(N), N2 is N*N. % if N is known compute N2=N*N
square(N, N2) :- var(N), % else if N is a variable
 between(0,N2,N), % look for some integer N between 0 and N
 N2 is N*N. % such that N*N = N2

2022-23 Prolog-2

Meta-programming

You can build terms from lists and viceversa with =..
term(1, two, three) =.. [term, 1, two, three]

You can apply/call predicates by adding other arguments
apply(Predicate, AdditionalArgsList) OR call(Predicate, AdditionalArg1, Arg2, …)
(this allows using partial predicates)

You can add/remove new facts or clauses to/from rule memory (if dynamic)

 % add at the beginning % add at the end
asserta(Head :- Body) assertz(Head :- Body)
asserta(Fact) assertz(Fact)

 retract(FactOrClause) % delete FIRST matching rule
 retractall(FactOrClause) % delete ALL matching rules

2022-23 Prolog-2

Definite Clause Grammars (DCG)
an alternative syntax to write parsers/generators

RULE READ FROM FILE

sentence -->
subject,
verb,
complement.

%special: terminal tokens as lists
verb --> [run].

IS TRANSFORMED TO

sentence(Words, Rest3) :-
subject(Words, Rest1),

 verb(Rest1, Rest2),
 complement(Rest2, Rest3).

% are simply expected as next token
verb([run | Rest], Rest).

Two arguments are added to each grammar rule head and body:
- the list of input tokens to be recognized
- the remaining list of tokens not consumed yet

2022-23 Prolog-2

Grammar example (with gender agreement)

sentence --> subject, verb, direct_object.
subject --> article(Gender), actor(Gender). % same gender for article & actor
direct_object --> article(Gender), object(Gender). % same gender for article & object
article(female) --> [la]. % female article
article(male) --> [il]. % male article
actor(_) --> [chirurgo]. % surgeon is both male/female in Italian
actor(female) --> [elefantessa]. % female elephant
actor(male) --> [elefante]. % male elephant
verb --> [mangiava]. % was eating
verb --> [guardava]. % was looking
object(female) --> [insalata]. % salad is female in Italian
object(male) --> [cavolfiore]. % cauliflower is male in Italian

2022-23 Prolog-2

We can use the grammar to generate all possible sentences
?- phrase(sentence, WordList)

[la, chirurgo, mangiava, la, insalata] % the female surgeon was eating the salad
[la, chirurgo, mangiava, il, cavolfiore] % the female surgeon was eating the cauliflower
[la, chirurgo, guardava, la, insalata] % ... looking the salad
[la, chirurgo, guardava, il, cavolfiore] % … looking the cauliflower
[la, elefantessa, mangiava, la, insalata] % the female elephant was eating the salad
[la, elefantessa, mangiava, il, cavolfiore] % the female elephant was eating the cauliflower
[la, elefantessa, guardava, la, insalata]
[la, elefantessa, guardava, il, cavolfiore]
[il, chirurgo, mangiava, la, insalata]
[il, chirurgo, mangiava, il, cavolfiore]
[il, chirurgo, guardava, la, insalata]
… %TASK: how can we add also number constraints?

2022-23 Prolog-2

Or to parse (recognize) a sentence and get the parse tree (DEMO)

English grammar example with sing/plural agreement

% a sentence is a NounPart followed by a VerbPart
s(s(NP,VP)) --> np(NP, Num), vp(VP, Num).

% a NP could be a PersonName
np(NP, Num) --> pn(NP, Num).
% or an Article followed by a Name
np(np(Det,N), Num) --> det(Det, Num), n(N, Num).
% or an Article, a Name and a PredicatePart
np(np(Det,N,PP), Num) --> det(Det, Num), n(N, Num),
pp(PP).

% a VerbPart can be a Verb followed by a NounPart
vp(vp(V,NP), Num) --> v(V, Num), np(NP, _).
% or a Verb followed by a NounPart and a PredicatePart
vp(vp(V,NP,PP), Num) --> v(V, Num), np(NP, _), pp(PP).

% a PredicatePart is a Preposition followed by a
NounPart
pp(pp(P,NP)) --> p(P), np(NP, _).

det(det(a), sg) --> [a]. % singular article
det(det(the), _) --> [the]. % article

pn(pn(john), sg) --> [john]. % person name

n(n(man), sg) --> [man]. % singular name
n(n(men), pl) --> [men]. % plural name
n(n(telescope), sg) --> [telescope]. % ...

v(v(sees), sg) --> [sees]. % singular verb
v(v(see), pl) --> [see]. % plural verb
v(v(saw), _) --> [saw]. % verb

p(p(with)) --> [with]. % preposition

2022-23 Prolog-2

Two possible parse trees for the same sentence:
?- phrase(s(Tree), [john, saw, a, man, with, a, telescope]).

The man had
a telescope

John was using
a telescope

s(pn(john),
 vp(v(saw),
 np(det(a),
 n(man),
 pp(p(with),
 np(det(a),
 n(telescope))))))

s(pn(john),
 vp(v(saw),
 np(det(a),
 n(man)),
 pp(p(with),
 np(det(a),
 n(telescope)))))

2022-23 Prolog-2

Common extensions

Grammars
grammar rules map easily to Prolog predicates, both for parsing and for text

generation

Constraints
the domain of the possible values of a variable can be constrained in many ways

 (e.g. the sudoku game)

OOP
terms could represent objects and their properties
rules could represent methods

GUI
widgets, events, callbacks and so on

2022-23 Prolog-2

Examples

Limericks

Grammar

Constraints (Sudoku)

Algebraic simplification?

Algebraic derivatives?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

