USA: the Advanced Placement curriculum "Computer Science <u>Principles</u>"

USA: AP <u>Computer Science Principles</u>

AP: Advanced courses for <u>High School students</u> (==> credit 4 uni.)

<u>Computational Thinking practices</u> vs. <u>main topics</u>

- **P1: Connecting Computing**
- P2: Creating Computational Artifacts
- **P3: Abstracting**
- P4: Analyzing Problems and Artifacts
- **P5: Communicating**
- P6: Collaborating

Big Idea 1: Creativity

Big Idea 2: Abstraction

Big Idea 3: Data and Information

Big Idea 4: Algorithms

Big Idea 5: Programming

Big Idea 6: The Internet

Big Idea 7: Global Impact

Methods in Computer Science education: Analysis

USA: Many CSP curricula available

Curriculum	Course Delivery	Programming Language / Environment
CodeCombat	Web Based	JavaScript / Python / HTML
The Beauty and Joy of Computing	Web Based edX	Snap!
Mobile CSP	Web Based	App Inventor
UTeach CSP	Web Based	Scratch / Processing
PLTW CSP	Canvas LMS Printable Student Content	Scratch / App Inventor / Python / HTML
Code.org CSP	Web Based	App Lab / JavaScript (Blockly)
CS50 AP	Wikispaces	Scratch / C
CS Matters	Face to Face	Python
EarSketch	Web Based: make music	Python / JavaScript
CodeHS	Web Based	JavaScript

The BJC curriculum (Beauty and Joy of Computing)

- **Unit 1: Introduction to Programming**
- **Unit 2: Abstraction**
- **Unit 3: Data Structures**
 - **Practice CREATE TASK**
- **Unit 4: How the Internet Works**
- **Unit 5: Algorithms and Simulations**

CREATE TASK

- **Unit 6: How Computers Work**
- Unit 7: Fractals and Recursion
- **Unit 8: Recursive Functions**

Methods in Computer Science education: Analysis

<== EXAM

Unit 1: Introduction to Programming

ORGANIZATION: 5 Lab units (plus some optional)

- **Pair programming:** Students work in pairs and swap role during the unit
- Discussion of what to do as a way to enforce ANALYSIS before implementation
- 1) move a sprite randomly, greet, save the program

2) Gossiping Sprites: use functions to select a random message to "say", <u>define</u> <u>functions</u>, ask something

- 3) Polygons: draw, repeat, ask numbers
- 4) Protect Privacy

(focus on social issues)

5) Follow the mouse or another sprite

Optional projects: Pong, drawing, random sentences,

Methods in Computer Science education: Analysis

Unit 2: Abstraction

1) Variables: local (number guessing game) and global (score of the game), Import/Export blocks

- 2) Lists: shopping list app, quiz app
- 3) Making decisions: If-the-else, Predicates, Boolean expressions, list filters
- 4) Math library: making new math functions
- 5) Copyright and Fair Use

(focus on social issues)

Optional: modelling language (plurals), mastermind, kaleidoscope, automated fortune teller

NOTICE: the suggested programming style is FUNCTIONAL

Methods in Computer Science education: Analysis

Unit 3: Data Structures

1) Complex drawings (cycles)

2) ADT: managing a contact list (name surname phone number ...), by defining its <u>builder</u> and <u>getters/setters</u>

- 3) Tic-tac-toe: check for winning game, lists comparison, map
- 4) Robots and AI: introduction and implications to Society
- 5) Computers and work: new type of jobs, impact on work

Optional projects: drawings, animations, music

Methods in Computer Science education: Analysis

2022-23

AP-CSP

Kids practice how to organize the design and development of the final "AP create task exam" with the help of teachers and peers

- 1) Using a Development Process to Organize Your Coding
- 2) Choosing Your Project
- 3) Implementing Your Development Process
- 4) Testing Your Project
- 5) Communicating About Your Project
- 6) Evaluating Your Work

During the exam they will have to work by themselves

Methods in Computer Science education: Analysis

Unit 4: How the Internet Works

- 1) Computer Networks: Network redundancy, internet addresses, history
- 2) Cybersecurity, cryptography: the Caesar cypher project
- 3) Social networks, cyberbullying, censorship, search engines
- 4) Data representation and compression

Methods in Computer Science education: Analysis

Unit 5: Algorithms and Simulations

- 1) Search algorithms and efficiency
- 2) Models and simulations: distributions of flipping a coin, spread of a virus, bank queue

2022-23

AP-CSP

- 3) Analysing data:
- 4) Unsolvable and Undecidable problems, Paradoxes, the Halting problem
- 5) Computer and Wars: cyberwar, drones, autonomous weapons, ethics
- 6) Tic-Tac-Toe with a Computer Player

EXAM (CREATE TASK)

Methods in Computer Science education: Analysis

Unit 6: How Computers Work

(optional)

1) Computer abstraction hierarchy

Application Programming Languages Libraries Operative System Hardware Components Integrated Circuits Gates Transistors

2) History and Impact of Computers

Methods in Computer Science education: Analysis

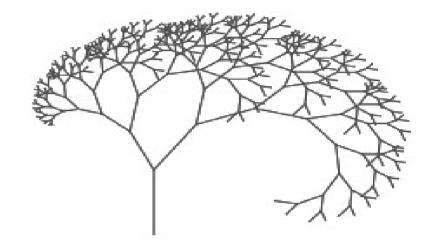
Unit 7: Fractals and Recursion

(optional)

1) Trees in a Forest

Recursive case

Base case


2) Recursion Projects

Sierpinski Fractal Triangle

Koch Snowflake

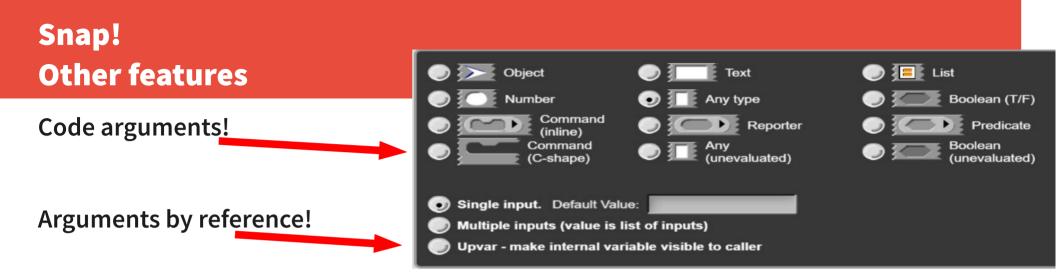
Lévy C-Curve Fractal

Recursive Mondrian

Methods in Computer Science education: Analysis

Unit 8: Recursive Functions

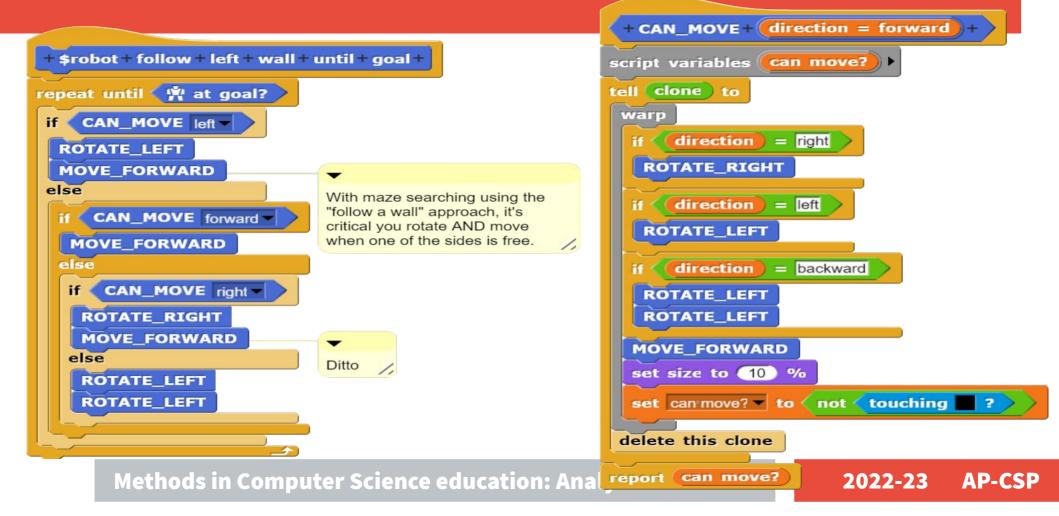
(optional)


2022-23

AP-CSP

- 1) Recursive Reporters (functions)
- 2) Base conversion
- 3) Subsets
- 4) Higher Order Functions (on lists)

Optional Projects: Pascal/Tartaglia triangle, Sorting


Methods in Computer Science education: Analysis

This allows building meta-programming blocks/functions!

Robot maze exploration example

