
Prolog (part 2)

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

2021-22 Prolog-2Methods in Computer Science education: Analysis

Recall:

FACT

 term(argument1, argument2, arg3 …). % rule always true

RULE

 head(arg1, arg2, …) :- % to prove this head
 body1(…), % we must prove this
 body2(…), % AND this
 … % …

 bodyN(…). % AND this

2021-22 Prolog-2Methods in Computer Science education: Analysis

Details on rule execution

To prove a predicate (e.g. a prolog term) we must search for:

1) a rule with the same head (should unify with the term to prove)
2) or a fact with same term (which also should unify)

i.e.:

- the term functor must be the same
- the number of arguments must be the same
- each argument must unify with the corresponding argument

This is generally used to selectively match the predicate clauses

Example: see next slide

2021-22 Prolog-2Methods in Computer Science education: Analysis

Lists (dynamic, heterogeneous)

List = [one, two, three, four] % list syntax

[Head | Tail] = List % how to extract the first element
Head = one % fails if the list is empty
Tail = [two, three, four]

[First, Second | Rest] = List % extracting first and second element
First = one % fails if the list has less than 2 elements
Second = two
Rest = [three, four]

EmptyList = [] % the empty list

is_empty([]). % test for empty list through unification

length([], 0). % base case: an empty list has length 0
length([H|T], N1) :- length(T,N), N1 is N + 1. % recursive case: compute the list length

2021-22 Prolog-2Methods in Computer Science education: Analysis

Predicates on lists

% list concatenation/split (if used backward)

append([], B, B). % B if A is empty
% else attach the first in front of the result of appending the rest to A
append([H | T], B, [H | C]) :- append(T,B,C).

% member check/generation

member(A, [A | _]). % A is member if first element
member(A, [_ | T]) :- member(A, T). % or if member of the rest
 % NOTICE: member obviously should fail if list empty

2021-22 Prolog-2Methods in Computer Science education: Analysis

Functional programming

Predicates can be used as if they were functions or to test values
You just add an argument to collect the result

square(X, Result) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test=compute+unify

You can map functions over lists (with the apply library)
List = [1, 2, 3, 4], maplist(square, List, List1).
=> List1 = [1, 4, 9, 16]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).
=> Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).
=> Odd = [1, 3] Even = [2, 4]

2021-22 Prolog-2Methods in Computer Science education: Analysis

What if predicates are used “backward”?

% find a list X that is partitioned this way
partition(is_odd, X, [1,3], [2,4]).

 [1,3,2,4] ; [1,2,3,4] ; [1,2,4,3] ; [2,1,3,4] ; [2,1,4,3] ; [2,4,1,3]

% What if we use maplist “backward”?
maplist(square, X, [1, 4, 9]). % is cannot be used “backward” in square
 Arguments are not sufficiently instantiated
 In: [3] 1 is _1680*_1682
% We need a better definition of square(N,N2)
square(N, N2) :- nonvar(N), N2 is N*N. % if N is known
square(N, N2) :- var(N), between(1,N2,N), N2 is N*N. % else look for
 % some integer N such that N*N = N2

2021-22 Prolog-2Methods in Computer Science education: Analysis

Meta-programming

You can build terms from lists and viceversa with =..
term(1, two, three) =.. [term, 1, two, three]

You can call/prove predicates built from data
call(Term, AdditionalArg, ...)
(this allows using partial predicates)

You can add/remove new facts or clauses to/from rule memory

 % add at the beginning % add at the end
asserta(Head :- Body) assertz(Head :- Body)
asserta(Fact) assertz(Fact)

 retract(FactOrClause) % delete FIRST matching rule
 retractall(FactOrClause) % delete ALL matching rules

2021-22 Prolog-2Methods in Computer Science education: Analysis

Definite Clause Grammars (DCG)
an alternative syntax to write parsers/generators

RULE READ FROM FILE

sentence -->
subject,
verb,
complement.

%special: terminal tokens
verb --> [run].

IS TRANSFORMED TO

sentence(Words, Rest3) :-
 subject(Words, Rest1),

verb(Rest1, Rest2),
complement(Rest2, Rest3).

% simply expected as next token
verb([run | Rest], Rest).

Two arguments are added to each grammar rule:
- the list of input tokens
- the remaining list of tokens not consumed yet

2021-22 Prolog-2Methods in Computer Science education: Analysis

Grammar example (with gender agreement)

sentence --> subject, verb, com_object.
subject --> article(Gender), actor(Gender). % same gender for article & actor
com_object --> article(Gender), object(Gender). % same gender for article &
object
article(female) --> [la]. % female article
article(male) --> [il]. % male article
actor(_) --> [chirurgo]. % surgeon is both male/female in Italian
actor(female) --> [elefantessa]. % female elephant
actor(male) --> [elefante]. % male elephant
verb --> [mangiava].
verb --> [guardava].
object(female) --> [insalata]. % salad is female in Italian
object(male) --> [cavolfiore]. % cauliflower is male in Italian

2021-22 Prolog-2Methods in Computer Science education: Analysis

Output

[la, chirurgo, mangiava, la, insalata]
[la, chirurgo, mangiava, il, cavolfiore]
[la, chirurgo, guardava, la, insalata]
[la, chirurgo, guardava, il, cavolfiore]
[la, elefantessa, mangiava, la, insalata]
[la, elefantessa, mangiava, il, cavolfiore]
[la, elefantessa, guardava, la, insalata]
[la, elefantessa, guardava, il, cavolfiore]
[il, chirurgo, mangiava, la, insalata]
[il, chirurgo, mangiava, il, cavolfiore]
[il, chirurgo, guardava, la, insalata]
… %TASK: how can we add number constraints?

2021-22 Prolog-2Methods in Computer Science education: Analysis

Common extensions

Grammars
grammar rules map easily to Prolog predicates, both for parsing and for

text generation

Constraints
the domain of the possible values of a variable can be constrained in

many ways (e.g. the sudoku game)

OOP
terms could represent objects and their properties
rules could represent methods

GUI
widgets, events, callbacks and so on

2021-22 Prolog-2Methods in Computer Science education: Analysis

Examples

Limericks

Grammar

Constraints (Sudoku)

Algebraic simplification?

Algebraic derivatives?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

