
Prolog (part 1)

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Prolog: logic programming
Created in France by Alain Colmerauer & co. at Marseille, France in the ‘70
for AI and computational linguistics

Declarative style of:
- representing data/relations (facts)
- representing how to solve a problem (rules/clauses)
- representing data structures (built through unification)

Used for:
- AI: natural language parsing and generation, planning, theorem proving,
math, symbolic manipulation, ...
- meta-programming (programs that create programs)
- ...

https://en.wikipedia.org/wiki/Prolog

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

SWI-Prolog

Implementation for Windows/OsX/Linux at https://swi-prolog.org

- OOP, GUI programming, Web programming, Semantic web …

IDE, editor and Web-based:
 - Browser-based interface at https://swish.swi-prolog.org
 - available also as a Docker image (swipl/swish)

 - SwiPrologEditor/IDE at Hessen University

 - Eclipse plugin (ProDT) at Bonn University

Interactive books to learn Prolog:

 - Learn Prolog Now! at http://lpn.swi-prolog.org

 - Simply Logical at https://book.simply-logical.space

https://swi-prolog.org/
https://swish.swi-prolog.org/
https://hub.docker.com/r/swipl/swish
http://arbeitsplattform.bildung.hessen.de/fach/informatik/swiprolog/indexe.html
https://sewiki.iai.uni-bonn.de/research/pdt/docs/start
http://www.let.rug.nl/bos/lpn/
http://lpn.swi-prolog.org/
https://book.simply-logical.space/

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Data types and program elements

Integers 42 Floats 3.14 Strings ”Hello world”
Atoms andrea Lists [one, 2, 3.14, ”four”]
Terms height(andrea, 186) Dicts movie{ director: “Martin… }

Variables are NOT typed, and start with Capital or _underscore
the assignment is UNDONE on backtrack!!!

Facts describe relations that are always true

 parent(maurizio, andrea). % Maurizio is parent of Andrea

Predicates/rules/clauses describe conditional relations
ancestor(Kid, Grandpa) :- % Grandpa is ancestor of Kid IF
 parent(Somebody, Kid), % there exists Somebody, parent of Kid
 ancestor(Somebody, Grandpa). % that has Grandpa as an ancestor

ancestor(Kid, Parent) :- % (base case of the recursive ancestor relation)
parent(Parent, Kid). % all parents are ancestors of Kid

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Program execution = query for a proof

A program execution is the response to a query asking the system to find
a proof that something (a fact) is true

The system looks for a way to prove your query by searching:
- a fact that directly satisfies your query
- or else for a predicate/rule that would be able to satisfy your query:

- if the head matches then recursively prove all its preconditions

If more than one ways exists to satisfy a query, all are tried in order (by
backtracking/undoing last choice if some of the sub-queries fails)

Facts/clauses are searched in their textual order in the program

Values assigned to the variables to satisfy the query are returned

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Declarative style

Facts can be considered as a database of known data

Could be used to teach data normalization

- 1NF: values are atomic/there is a unique key/reduced form

- 2NF: + no partial dependencies (create other tables)

- 3NF: + no transitive dependencies (create other tables)

To retrieve a record with simple WITH constraints just QUERY with
partial arguments and get variable values filled with found data

To use more complex WITH constraints use rules.

To get table JOINS just AND queries (that must be all true)

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Example: a small genealogy problem

From the ‘parent’ relation
 mario

carla maurizio ... dina roberto

 gianluca andrea nicoletta ...

 davide teresa

To find all teresa’s ancestors we recursively climb the parent relation

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Representing facts AND relations (deduction rules)

 FACTS

parent(mario, maurizio).
parent(mario, carla).
parent(maurizio, andrea).
parent(maurizio, gianluca).
parent(andrea, teresa).
parent(andrea, davide).
parent(dina, nicoletta).
parent(roberto, nicoletta).
parent(nicoletta, teresa).
parent(nicoletta, davide).

 RULES

ancestor(Kid, Parent) :- % base case
parent(Parent, Kid).

ancestor(Kid, Grandpa) :-
parent(Somebody, Kid),
ancestor(Somebody, Grandpa).

 QUERY (find all ancestors)

?- ancestor(teresa, A).
A = andrea ; A = nicoletta ;
A = maurizio ; A = mario ;
A = dina ; A = roberto ;
false (no more solutions)

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

So many different queries
from the same facts/rules!

% find known dina’s nephews
?- ancestor(N, dina), not(parent(dina, N)).

N = teresa ; N = davide ; false (no more solutions)

% find known sibling pairs
?- parent(Parent, Kid1), parent(Parent, Kid2), Kid1 @< Kid2.

Parent = mario, Kid1 = carla, Kid2 = maurizio ;
Parent = maurizio, Kid1 = andrea, Kid2 = gianluca ;
Parent = andrea, Kid1 = davide, Kid2 = teresa ;
Parent = nicoletta, Kid1 = davide, Kid2 = teresa ; false

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Procedural interpretation of a Prolog program

You can see the rules/facts of your program as if they were a set of
“subroutines”, each with multiple alternative implementations

When you query for a given term proof, you CALL the corresponding
set of clauses, which are tried one at a time (in textual order)

When a clause is called, its inner prerequisites are CALLED sequentially

When one FAILS, another clause is tried for the same term (by backtracking
to the most recent choice, undoing it and trying the next)

This implies a DFS search of a solution in the execution tree

The first solution found is returned with its variable assignments

If you ask for another solution (tab or ;) Prolog bactracks and continues

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Unification = Matching between data-structures

Unification: its powerful term-matching mechanism can be used to
automatically pack/unpack terms and data structures

When they contains variables, Prolog looks for a suitable assignment of
the variables (on both sides!)
Notice that the term functor and arity (# of args) should match

E.g.

 parent(Dad, andrea, male) = parent(maurizio, andrea, Gender)
is true when Dad = maurizio AND Gender = male

Unification is way more powerful than Python multiple assignment used
to pack/unpack, as unification goes both ways and inside terms

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Two different types of “assignment”
term unification vs. math computation

Unification is used to pack/unpack data structures (terms, lists, …)
term(X, two, three(X)) = term(four, B, C)
=> X=four B=two C=three(four)

NOTICE how the X value appears now in the term assigned to C

Unification CANNOT compute math expressions (but CAN do symbolic manipulation)

To do computation, instead, we use ‘is’ to evaluate expressions

 A is max(3, 5) => A=5
B is A * 10 => B=50
C is 12 mod 7 => C=5

Functions available: min, max, arithmetic, random, trigonometric, logarithms
logical (bits), ascii, ...

(a third type of assignment as constraint over the variable domain is available in Constraint
Logic Programming predicates)

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Demo

 Genealogy demo

 SWISH examples: kb, movies

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Lists (dynamic, heterogeneous)

List = [one, two, three, four] % list syntax

[Head | Tail] = List % how to extract the first element
Head = one % fails if the list is empty
Tail = [two, three, four]

[First, Second | Rest] = List % extracting first and second element
First = one % fails if the list has less than 2 elements
Second = two
Rest = [three, four]

EmptyList = [] % the empty list

is_empty([]). % test for empty list through unification

length([], 0). % recursively compute the list length
length([H|T], N1) :- length(T,N), N1 is N + 1.

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Predicates are relations
and works in many ways/directions

append([a], [b, c], L) => L = [a, b, c] % concatenation
append(A, [b, c], [a, b, c]) => A = [a] % split
append(A, B, [a, b, c]) => A = [], B = [a, b, c] ; % all possible splits

 A = [a], B = [b, c] ;
 A = [a, b], B = [c] ;
 A = [a, b, c], B = [] ; fail

member(a, [a, b, c]) => true % check membership
member(A, [a, b, c]) => A=a or A=b or A=c % find members
member(a, B) => B = [a|_] ; % generate list starting with a

 B = [_,a|_] ; % generate list with a in 2° place
 B = [_,_,a|_] ; % generate list with a in 3° place
 … (infinite solutions)

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Functional programming

Predicates can be used as if they were functions or to test values
You just add an argument to collect the result

square(X, Result) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test = compute+unify

You can map functions over lists (with the apply library)
List = [1, 2, 3, 4], maplist(square, List, List1).
 => List1 = [1, 4, 9, 16]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).
 => Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).
 => Odd = [1, 3] Even = [2, 4]

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

There is no need for looping constructs
Recursion, recursion everywhere!

NORMAL WAY: Repeating N times is done through recursion
repeat_something(0). % base case
repeat_something(N) :-

 N > 0, % we are in the recursive case
 do_something,
 N1 is N-1,

 repeat_something(N1).
NOTICE: in this case you CAN collect results through the predicate variables

FAILURE-DRIVEN-WAY: repeat by failing, backtracking and retrying
 repeat_something(N) :-
 between(1, N, X), % generate X=1, 2, 3, 4, 5 … N by backtracking

 do_something,
 fail. % to avoid failure of the predicate

 repeat_something(_). % add a default “always true” clause
NOTICE: in this case you CANNOT collect results (unless you use side-effects)

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

More general ways to collect all solutions
or to repeat

All solutions (with repetitions): bagof(Term, Predicate, ListOfTerms)
 ?- bagof(X, (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

 => Odd = [3, 3]

All unique solutions: setof(Term, Predicate, SetOfTerms)
 ?- setof(X, (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

 => Odd = [3]

Repeat a call for each solution of a Predicate: forall(Predicate, DoSomething)
?- forall(member(El, [1, 2, 3]), writeln(El)).

1
2
3

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Programming styles

Single threaded

Declarative: data AND rules
- declarative data => relational data representation (SQL-like)

Functional: rules as functions transforming data

Meta-programming: programs that BUILD programs

Predicate/Relations can be used in many directions

Recursion, recursion everywhere!

Parallelism in some particular Prolog (Sicstus, Parlog, GHC)

Simple multiprocessing with the ‘spawn’ library

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Prolog Pro/Cons for teaching

PRO

- Focus on data abstraction

- Focus on relations instead than
procedures

- easy Natural Language processing
and generation

- easy Symbolic manipulation
(Math, Algebra, Physics, …)

- AI

- Recursion everywhere!

CONS

- Not typed (but you can use
terms for dynamic typing)

- There is no really nice IDE
(or you can use Eclipse PDT)

- Recursion everywhere!

AA 21-22 Prolog 1Methods in Computer Science education: Analysis

Demo

DEMO

(to be continued)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

