
MIT App Inventor 2

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

2021-22 AppInventor 2Methods in Computer Science education: Analysis

App Inventor 2: building simple Android apps

Built with Blockly http://ai2.appinventor.mit.edu

Build, compile, and deploy Android App on the phone

NEW!!! for iPhones ALSO!!!

Automatic deploy of changes while editing, either to the Phone
or to an Emulator

Install AI2 Companion App

Run the Companion and connect by QR or code

Apps can be Packaged and installed stand-alone on the phone

https://developers.google.com/blockly
http://ai2.appinventor.mit.edu/
https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Special tricks

Use an emulator instead than a phone

Genymotion for Windows, MAC or Linux
Note: in Genymotion install the Arm Translation Toolkit

BlueStacks for Windows or MAC (faster)

BEST: share phone screen on PC with scrcopy (via ADB debug)
via USB or Wifi (if your phone allows it)

The server can be LOCAL to avoid network problems
App Inventor 2 Ultimate [2018]

(or you can compile and run it from
http://appinventor.mit.edu/appinventor-sources)

https://www.genymotion.com/
https://github.com/m9rco/Genymotion_ARM_Translation
https://www.bluestacks.com/
https://github.com/Genymobile/scrcpy/releases
https://sourceforge.net/projects/ai2u/
http://appinventor.mit.edu/appinventor-sources

Web-based GUI editor

W
I
D
G
E
T
S

WIDGET
TREE

P
R
O
P
E
R
T
I
E
SFILES

GUI

EDITOR

Code editor

CA
TE
GO
RI
ES

WID
GET

TREE

FILES

BLOCKS CODE
PROCEDURE DEFINITION

EVENT CALLBACKS

2021-22 AppInventor 2Methods in Computer Science education: Analysis

App structure

One “screen” for each phase (config, login, play levels, results ...)

Screens are independent and DO NOT share data or code
(but a local TinyDB key/value DB component allows exchanging data)

Or you can pass/retrieve some text when switching to another screen

Apps are independent and DO NOT share data or code (Android)
(you can exchange data by using an external WebService + WebDB/CloudDB)

Resources (video, audio, files, images ...) are bundled in the apk

Practical Limit: 10 screens max
To mimic many screens you can hide/show widgets in the same screen
by leveraging the widget tree (you just hide/show the parent widget)

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Many widgets/objects available

Widgets: Buttons and other input fields

Layout: Automatic layout constraints

Media: Sound, Movie, Camera, SoundRecorder,
 SpeechRecognizer, TextToSpeech, YandexTranslate, …

Drawing: Canvas, Sprite, Ball

Maps: Maps, Polygonals, Markers, Features (from GeoJson)

Sensors: Accel, Temp, Baro, Gyro, Barcode, Pedometer, NFC, …

Social: Contacts, PhoneCall, Email, Twitter, Sharing, Texting

Storage: TinyDB, TinyWebDB, CloudDB (Redis), File, FirebaseDB

Connect: BT Client, BT Server, Web, Serial, ActivityStarter (other apps)

Lego: NXT, EV3

http://ai2.appinventor.mit.edu/reference/components/

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Data types

Numbers, Strings, Lists, Lists of Lists, Dictionaries, (Booleans)

All interface widgets are objects with:
Predefined Properties (pre-set in the IDE, or read/changed by program)

Events they can generate on interaction

Methods that can be called

Some objects are not visual (i.e. BluetoothClient, Sound, …)

Computed values are represented with a “puzzle” connector
(while in Scratch they were ovals)

Some static data type enforcement (checked but not shown)

2021-22 AppInventor 2Methods in Computer Science education: Analysis

NEW data types and methods

Text: obfuscated text

Lists: foreach iterator
 CSV <=> list of lists
 list of pairs as a read-only dictionary (FIRST match)

Dictionaries!
with key/value enumerator

with path access to inner values

XML => dictionary

JSON => dictionary

2021-22 AppInventor 2Methods in Computer Science education: Analysis

(Visual) Language style / Blocks symbology

Inline / external inputs

Extensible blocks

Text-based blocks (no pre-scholar)

“Function-like” blocks (with result plug)

“Procedure-like” blocks (without result plug)

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Code style: event-based

You implement mainly Events, Procedures and Functions

GLOBAL variables outside any Event/Function/Procedure

You can define variables LOCAL to the procedure/function
Can be changed/used only within their “scope bracket” (or as a return value)

This allows a “functional decomposition” style (but no lambdas)

Limited support to debugging (e.g. NO easy variable display)
You can “collapse” the functions/events/procedures

You can enable/disable some blocks

You can “comment” your blocks

All changes are automatically reflected in the Appinventor Companion

http://ai2.appinventor.mit.edu/reference/other/testing.html

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Execution model:
event-based programming
NO multiple concurrent events

NO message passing

Almost all objects generate events when interacted with
E.g. “When the screen changes”, “When the button is clicked”,
“When the text-area content is changed”, “When permission is granted”,
“When got/lost focus”, “Before/After choosing”,
“When the screen orientation is changed” …

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Asynchronous protocols?

Asynchronous protocols are split in 2 or more phases
E.g. “Ajax query to web URL”

“When the response arrives” events

This to remove busy wait and to get an async interaction

To behave differently for different cases you can use globals as semaphores

NO object orientation (no way to add properties or to clone)

2021-22 AppInventor 2Methods in Computer Science education: Analysis

How to enable students’ cooperation

[Kate Feeney's MA thesis at the Mills College]

Ask each student to implement just one screen of a complex App

Start with a template App (just empty screens and media files)

Students agree on data interactions, data formats and names
Common resources can be shared among screens

Communication between screens is handled by TinyDB objects

At the end you merge all the screens made by the students
into a single App (with the AI2 Project Merger Tool)

Homework: build an app/game cooperatively

https://appinventor.mit.edu/explore/sites/all/files/Resources/EncouragingCollaborationFeeneyThesis.pdf
https://appinventor.mit.edu/explore/resources/ai2-project-merger

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Other ways to organize collaboration projects

Multiple interacting applications can communicate through

- Bluetooth (direct communication + protocol implementation)
 (no async communication)

- Wifi + CloudDB (central coordination by data sharing)

Examples:

- Collect and map features on the field in real time

- Collect data from sensors and visualize them in real time

- …

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Extensions (written in Java/native)

ImageProcessor: weighted combination of images

VectorArithmetic: vector sum

SoundAnalysis: pitch decoder (note recognition)

Posenet: body pose estimation (key joints of a human)

BluetoothLE: Bluetooth Low Energy

ScaleDetector: pinch zoom/reduce

Look: classify images/videos

ImageClassifier: classify images/videos with your model

And MANY MANY MANY MORE!

https://puravidaapps.com/extensions.php

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Computational Thinking topics

Algorithm, structured coding, functions, local variables, data
structures, types (enforced but not visually highlighted)

GUI programming, Event programming

NO simple concurrency (single flow of computation)

More limited and easier than Snap!

Mobile games

Multiplayer apps (connected by WebDB or Bluetooth)

Cooperative development!

2021-22 AppInventor 2Methods in Computer Science education: Analysis

Interdisciplinary topics ideas

So many sensors!!! → → Physics! Data collection!

Protocol simulations with Bluetooth → → Networks

NFC or QR codes → → tangible interaction? Tagged info?

Maps, GPS, Maps Annotations → → Geography, History

Media → → Art, Literature

Text to Speech/Speech recognition → → 2nd Language

… please suggest!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

