
Methods in Computer Science education: Analysis
2020-21

Teaching Computational Thinking

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

2020-21 lesson 1

What are we doing here?

GOAL: How do we teach Computational Thinking?

WHY? (today)

 Define the Computation Thinking concepts

 Define the course structure and what will be your assignments

and HOW? (rest of the course)

 Analyse several learning environments/languages/programming styles

 Analyse example learning units

 Build learning units

2020-21 lesson 1

But WHY should we teach kids how to code?

1. To prepare new generations to new jobs? (?!?!?)
What about AI-generated programs? What about programmers exploitation?

2. To ask kids to build stories in a different way than just writing?
Story-telling as a creative way of creating and playing/moving characters

3. To vaccine youngsters against bad algorithms?
Avoid being only program consumers and data producers

4. To empower everybody to be able to write her programs?

5. To introduce Computational Thinking <==

6. To introduce constructive didactics in any discipline <==

2020-21 lesson 1

KEY effects of teaching Computational Thinking

Motivating students’ interest
Robotics, Storytelling, Simulation, Social impact, Videogames, Embedded
systems (see Design), CS Unplugged, Personal interests

Role playing and mental models of computation

Importance of Randomness in creativity → automatic learning
Simulation of Natural evolution / Artificial Intelligence

Programming styles
Functional → filters and transformations Procedural → drive a robot/agent

Declarative/logic → relations & rules OOP → office metaphor

CS as the Science of “HOW TO DO/DESCRIBE/BUILD/SIMULATE?”

2020-21 lesson 1

A ‘BIT’ of History
educational programming languages

When Where Language Inspired by Created by

1964 Darthmout BASIC [Kemeny & Kurtz]

1969 BBN Logo Lisp [Feurzeig, Papert & Solomon]

1970 Zurigo Pascal [Wirth]

1981 Carnegie Mellon Karel Pascal [Pattis]

1996 Apple/Disney
HP/SAP

Squeak Smalltalk [Kay, Ingalls & Goldberg]

1996 Disney e-Toys Logo/Smalltalk [Kay]

1999 NortWestern NetLogo Logo [Wilensky]

2001 Guido van Robot Python [Howell]

2006 MIT Scratch Logo [Resnick]

2010 India Kojo Scala [Pant]

2014 Sacramento Flowgorithm Flowcharts [Cook]

https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Logo_(programming_language)
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Karel_(programming_language)
https://en.wikipedia.org/wiki/Squeak
https://en.wikipedia.org/wiki/Etoys_(programming_language)
https://en.wikipedia.org/wiki/NetLogo
http://gvr.sourceforge.net/
https://scratch.mit.edu/
https://www.kogics.net/kojo
http://www.flowgorithm.org/

2020-21 lesson 1

But also ...

Alice (Java)

Blockly (visual)

 Code.org

Appinventor

CiMPLE (C)

Kodu

Lego Mindstorms

Mama

Greenfoot (Java)

ToonTalk

Snap! (at Stanford)

Stencyl

Prolog (text-based)

… and may others

(you can use the one you like)
Please suggest more!

2020-21 lesson 1

WHAT is Computational Thinking? [Papert ‘80]

Abstraction
Analysis, representation

Automation
Planning steps
Define sub-problems,
and transformations

Analysis
Observation,
consequences,
evaluation

Image by KaptainFire - Own work A. Repenning, A. Basawapatna, and N. Escherle, "Computational Thinking Tools," to appear at the IEEE Symposium on Visual Languages and
Human-Centric Computing, Cambridge, UK, 2016., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48453667

2020-21 lesson 1

Computational Thinking: Abstraction

Abstraction of information/representation
Data representation, variables and memory, objects and attributes, types

Abstraction of process/control
Sequential algorithms, event-based programming, parallel programming,
data flow, declarative programming, object oriented programming

Abstraction of methodology / problem analysis
Top-down analysis, bottom-up analysis, declarative style, flow-based,
pattern-matching rules, object orientation, functional, ...

2020-21 lesson 1

Computational Thinking: Automation

Find a suitable representation for the information

Split the problem in small steps (or better said “smaller problems”)

Order them in one or more sequences/algorithms

Describe the data flowing between steps

Find a “suitable” implementation of the steps
Within the constrained resources available (time, memory)

But also: (motivation for literate/well documented programming)
Prepare for the evolution/maintenance of your solution

Keep track of the ideas guiding your thoughts/analysis

Enable/empower others to use your solution

2020-21 lesson 1

Computational Thinking: Analysis of the execution

Prepare for observation
Choose good visualizations, print intermediate data to expose inner details

Compare with expectations
Simulate the algorithm in your head, predict the outcome for simple cases,
define test cases/examples

Diagnose discrepancies w.r.t. specification AND expectation
Find reasons for observed discrepancies, use assertions to early detect for
anomalies, debug and observe the inner computation (variables AND flow)

==>> Better understand BOTH the problem AND the computer
The problem description/specification could be challenging to fully grasp
The programming language, functions, libraries can be tricky to master

2020-21 lesson 1

BUT: What about the Social impact of C.T.?

C.T. could be seen as too much focused on the C.T. process
 Abstraction / Automation / Analysis

A critique moved to C.T.:
little analysis of the impact on other fields

 Reuse and modularity, analogy, social impact

For this reason (and others) we will design interdisciplinary units

And we must give a lot of attention to the program “life”
and to the data required, managed, deduced

2020-21 lesson 1

Why one should learn C.T.?

Pro:
Computer Science is the Science of HOW (to represent, to compute, to solve)

You will see other fields (Society, Music, Language, Art, Medicine …)
with a different analytic/creative eye

Society is more and more computer-based, therefore knowing how to write/understand
programs makes you less dependent on others

You can explore (virtually and physically) new ideas at relatively low cost

Even if you WILL NOT program, you will understand the possibilities and you will be able to
describe what you want to be programmed/created

Con:
Shabby/good-enough solutions trick you into false understanding and lazy methodology

The social impact of a program or of its data could be way bigger than you think

2020-21 lesson 1

Motivation, in school, could be a huge problem

Teaching programming to university students is easier (we know!)
They chose it, and we (try to) go deep in many interesting ways

Some school students didn’t choose the topic, but could be motivated
by raising their interests with concrete interesting problems

Robotics, Embedded systems (see CS-edu:Design), Storytelling, Simulation,
Social impact, Video games, Personal interests, Local issues, Phone apps

Role playing can make C.T. concepts very clear in a playful way to
younger students

They could either pose as the “programmed agent” or be the “programmer”

CS Unplugged activities can show C.T. methods without a PC
Appealing for very very young students

2020-21 lesson 1

What false assumptions people have
about Computers?
You just need to know how to USE a computer (?!?)

Computers are FAST
BUT DUMB!!! Limited instructions BUT bloody fast CPUs and intelligent algorithms

Computers are FLEXIBLE and MULTI-PURPOSE
BUT RIGID and UNFORGIVING :-) There are soooooo many details to be aware of
(declarations, initializations, scope, arguments, program termination, syntax, errors …)

Computers SAVE YOUR TIME, Programming is EASY (!?! WTF !?!)
BUT programming is TIME-CONSUMING, you must be EFFICIENT and PERSISTENT:

When you code: (good IDEs, good documentation, easy programming languages, …, GOOD METHODOLOGY)

When you run (efficient algorithms, special data structures, …)

When you fix YOUR (or other’s) mistakes (good documentation, good tests)

Computer can store HUGE amount of data
BUT RAM memory space is limited. Virtual Memory helps but SLOOOOWS DOWN EVERYTHING

2020-21 lesson 1

What new concepts are introduced
because of Computers? (methodology level)
Problem solution by reduction to smaller problems

Algorithm as a sequence of actions
(but see also declarative, parallel, data-flow, rule-based or … neural networks!)

Data representation
Algorithms must manage some meaningful representation of information

Constrained execution (time, memory)

Simulation as tool to explore the impossible (“What if”)
Explore multiple consequences in a virtual world with new rules

Empowerment and collaboration of the individual in the society
Open-data, Open-formats and Open-source development enable the single to collaborate with others
and tackle global issues

Social issues of the information you receive/derive
Information as a good to be sold/exchanged. Sensitive data.

2020-21 lesson 1

What new concepts are introduced
because of Computers? (computer specific)
STATE changing through time (THE main difference w.r.t. Math)

Information representation, data types (analogy with Physics?)

Names vs memory (HUGE misunderstandings arise here)

Functions, arguments, return values

Side-effects (and bloody global variables)

Language syntax (bloody parentheses and semicolons)

Objects, attributes (and again, changing state)

Methods as object’s actions/abilities, the office metaphor

Control structures (loops/repetition, conditions)

2020-21 lesson 1

How to analyse and build a program?

Top-down analysis
Define input/output data representation

Write an high-level description of the problem, divided in steps

Implement the algorithm by defining mock functions for each step, mimicking their I/O

If needed:

define the additional intermediate data passed between steps

add the initial data definition and initialization

Test if the logic is correct

Repeat the analysis/implementation on each high-level step/function so defined

When the steps are sufficiently detailed and similar to the programming language constructs,
implement the details of the actual program

Be aware that
Global variables → side-effects hidden from functions definition and usage

Poor control structures and poor logic can produce inefficient/endless computations

2020-21 lesson 1

Other analysis methodologies

Object-oriented
Define classes of objects responding to requests and interacting with each other.
Try to reuse/standardize behaviours/definitions to simplify interoperability of
objects and algorithms. Find common procedures but allow for exceptions.

Event-based (GUI, e.g. see AppInventor)
Describe how a collective set of objects should react to external events

Declarative/Logic-based (Prolog)
Describe relations among data and how more complex properties can be derived
from simpler ones. Let the system find a solution plan.

Bottom-up
Start from small data manipulations and build more complex ones.

2020-21 lesson 1

How other fields can benefit
from Computer Science methods?
Exploration of laws and rules by modelling and simulation

Physics, Combinatorics, Chemistry, Geometry, ...

Exploration of creativity by building computational models
Language generation and analysis, Music generation, ...

Algorithmic description of problems/solutions or of rules
Math simplification, Language analysis

Learning a methodology to analyse problems

Data representation: a way to capture regularity and exceptions

Randomness: a tool to explore creativity (and mimic intelligence)
Simulation of Darwin’s evolution

2020-21 lesson 1

What approaches can make easier learning C.T.?

Syntax is considered one main problem for younger kids
We could completely remove the syntax by using visual programming

Joining snap-on blocks (Blockly, Scratch, Snap! and similar)

Drawing flow charts to describe the control flow (Flowgorithm)

Drawing data-flows to describe the data flow (LabView and similar)

Editing multiple agent properties/predefined behaviors (GameMaker, Alice, ...)

Or simplify the syntax to make the programs easier to read/write

Logo, Smalltalk, Python, Ruby, Scala, (Prolog), Occam, …

Helping the student to build a mental model of what happens
Visualizations of the inner program status (variables, execution, debug)

Visualization of external effects (simulated agents moving around, robots)

2020-21 lesson 1

What Learning environments could be used?

In the rest of the course we will:
Analyse environments/languages built for learning how to program

Visual-based: Snap!, Scratch, Blockly, OpenRoberta, AppInventor …

Logo-based: NetLogo, LibreLogo

Scala-based: Kojo

Logic-based: Prolog

Flowchart-based: Flowgorithm

Data-flow based: LabView

We will build an example learning unit within the environment/language

We will find and analyse learning experiences from around the world

We will suggest/discuss/plan new learning units

You will build and present the learning units designed

2020-21 lesson 1

How others are teaching C.T. around the world?

Visual programming
Scratch Blockly Snap! AppInventor OpenRoberta

Programmareilfuturo.it code.org

Commercial
Microsoft Minecraft Education edition education.minecraft.net

Apple Swift Playgrounds (on iTune)

Wolfram computationalthinking.org

Less knowns approaches
Flowgorithm, LabView, NetLogo, Alice ...

2020-21 lesson 1

Course prerequisites

You MUST be fluent in at least two programming languages
Python? C/C++? Java? Pascal? Ruby? Lua?

Prolog? Scala? JavaScript? Assembly? Go? ???

You MUST be fluent in at least two programming
paradigms/styles

Procedural? Object Oriented?

Declarative/logic? Functional?

Data-flow? ???

Please fill the on-line questionnaire

 http://bit.ly/CSedu-q1

http://bit.ly/CSedu-q1

2020-21 lesson 1

Course methodology

The course is very hands-on, we will
Use many learning environments, visual or textual

Analyse their strengths/weaknesses w.r.t. learning Computational Thinking

Analyse learning units built by others (including your peers of AA18-20)

Design and Build complete functioning learning units

We focus on interdisciplinary learning units
To apply the Computational Thinking methodology

To show that programming helps understanding/exploring the problem to be solved

And thus to constructively solve the interdisciplinary task

Comments/suggestions/improvements/critiques are WELCOME

2020-21 lesson 1

Course assessment

You will build 3 new interdisciplinary learning units in 3 different
learning environments/systems of your choice (2/3rd of the grade)

At most 2 LU can be made with block-based systems

You can work either alone or in small groups (max 2). Groups are expected to
produce more complex learning units. The group work done should be clearly split
among the participants (“who did what?”)

Learning unit presentation and discussion (1/3rd of the grade)
You will present and discuss with the rest of the class your learning units, describing
motivations, methodologies, features, experienced problems, possible problems for
application in class and proposed solutions

“Net-borrowed” learning units must show what is your contribution
(but, anyway, I will ask for improvements / heavy modifications)

2020-21 lesson 1

Schedule of the course

Lessons

End of March: propose/discuss/present your 1st Learning Unit

Lessons

End of April: propose/discuss/present your 2nd LU

Lessons

End of May/exam: propose/discuss/present your 3rd LU

Exam

2020-21 lesson 1

What’s important in your Learning Units
1) WRT the interdisciplinary topic
The topic MUST BE interdisciplinary (CANNOT BE a programming
game or quiz)

Deliverable: 1 PDF + 2 programs

PDF describing the interdisciplinary topic and the Learning Unit
Prerequisites and Placement in the course/school

Describe the organization of the lesson, the topic, the task to be solved

REMEMBER: You are the expert
Choose the topic wisely and study it very well

2020-21 lesson 1

2) WRT Computational Thinking/Implementation

The implementation MUST use some data structure declaratively

Describe Prerequisites and Placement wrt to programming knowledge

Describe the data available, the data computed, the
algorithms/interactions, the libraries given to the students

Explain WHY did you chose that system?
Try to “hero” (use in a prominent way) the system’s best features

Assessment grid describing how you will grade the programs
Build an example of Minimal and Maximal implementations

REMEMBER: You are the expert
Show beautiful well-modularized and documented code

2020-21 lesson 1

Course site (on twiki)

Chat about your experiences

Fill the on-line questionnaire

 http://bit.ly/CSedu-q1
 (it takes just 2 minutes)

Send me your Telegram handles (just for emergency comms.)

sterbini@di.uniroma1.it (for comments/suggestions)

https://twiki.di.uniroma1.it/twiki/view/CSeduA
http://bit.ly/CSedu-q1
mailto:sterbini@di.uniroma1.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

