
Prolog (part 2)

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

2020-21 Prolog-2Methods in Computer Science education: Analysis

Lists (dynamic, heterogeneous)

List = [one, two, three, four] % list syntax

[Head | Tail] = List % how to extract the first element
Head = one % fails if the list is empty
Tail = [two, three, four]

[First, Second | Rest] = List % extracting first and second element
First = one % fails if the list has less than 2 elements
Second = two
Rest = [three, four]

EmptyList = [] % the empty list

is_empty([]). % test for empty list through unification

length([], 0). % recursively compute the list length
length([H|T], N1) :- length(T,N), N1 is N + 1.

2020-21 Prolog-2Methods in Computer Science education: Analysis

Predicates on lists

% list concatenation/split (if used backward)

append([], B, B). % B if A is empty
% else attach the first in front of the result of appending the rest to A
append([H | T], B, [H | C]) :- append(T,B,C).

% member check/generation

member(A, [A | _]). % A is member if first element
member(A, [_ | T]) :- member(A, T). % or if member of the rest

2020-21 Prolog-2Methods in Computer Science education: Analysis

Predicates are relations
and works in many ways/directions

append([a], [b, c], L) => L = [a, b, c]
append(A, [b, c], [a, b, c]) => A = [a]
append(A, B, [a, b, c]) => A = [], B = [a, b, c] ;

A = [a], B = [b, c] ;
A = [a, b], B = [c] ;
A = [a, b, c], B = [] ; fail

member(a, [a, b, c]) => true
member(A, [a, b, c]) => A=a or A=b or A=c
member(a, B) => B = [a|_] ; % list starting with a

B = [_,a|_] ; % list with a in 2° place
B = [_,_,a|_] ; % list with a in 3° place
… (infinite solutions)

2020-21 Prolog-2Methods in Computer Science education: Analysis

Functional programming

Predicates can be used as if they were functions or to test values
You just add an argument to collect the result

square(X, Result) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test=compute+unify

You can map functions over lists (with the apply library)
List = [1, 2, 3, 4], maplist(square, List, List1).

=> List1 = [1, 4, 9, 16]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).

=> Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).

=> Odd = [1, 3] Even = [2, 4]

2020-21 Prolog-2Methods in Computer Science education: Analysis

What if predicates are used “backward”?

% find a list X that is partitioned this way
partition(is_odd, X, [1,3], [2,4]).

 [1,3,2,4] ; [1,2,3,4] ; [1,2,4,3] ; [2,1,3,4] ; [2,1,4,3] ; [2,4,1,3]

% What if we use maplist “backward”?
maplist(square, X, [1, 4, 9]).
 Arguments are not sufficiently instantiated
 In: [3] 1 is _1680*_1682

…
% We need a better definition of square(N,N2)
square(N, N2) :- nonvar(N), N2 is N*N. %if N is known
square(N, N2) :- var(N), between(1,N2,N), N2 is N*N. % else

2020-21 Prolog-2Methods in Computer Science education: Analysis

Or else you could collect all solutions by:

All solutions of a Predicate: bagof(Term, Predicate, ListOfTerms)
?- bagof(odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

=> Odd = [odd(3), odd(3)]

Unique solutions: setof(Term, Predicate, Set)
 ?- setof(odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

=> Odd = [odd(3)]

Just repeat DoSomething for each solution of a Predicate:
forall(Predicate, DoSomething)

?- forall(member(El, [1, 2, 3]), writeln(El)).
1
2
3

2020-21 Prolog-2Methods in Computer Science education: Analysis

Meta-programming

You can build terms from lists and viceversa
term(1, two, three) =.. [term, 1, two, three]

You can call/prove predicates built from data
call(Term, AdditionalArg, ...)

You can add/remove new facts or clauses to/from memory
asserta(Head :- Body) assertz(Head :- Body)
asserta(Fact) assertz(Fact)
retract(FactOrClause)

2020-21 Prolog-2Methods in Computer Science education: Analysis

Alternative syntax to write parsers/generators
Definite Clause Grammars (DCG)

 RULE READ

sentence -->
subject,
verb,
complement.

%special: terminal tokens
verb --> [run].

 TRANSFORMED TO

sentence(Words, Rest3) :-
 subject(Words, Rest1),

verb(Rest1, Rest2),
complement(Rest2, Rest3).

% simply expected as next token
verb([run | Rest], Rest).

Two arguments are added to each grammar rule:
- the list of input tokens
- the remaining list of tokens not yet consumed

2020-21 Prolog-2Methods in Computer Science education: Analysis

Grammar example

sentence --> subject, verb, object.
subject --> article(Gender), actor(Gender).
object --> article(Gender), object(Gender).
article(female) --> [la].
article(male) --> [il].
actor(_) --> [chirurgo].
actor(female) --> [elefantessa].
actor(male) --> [elefante].
verb --> [mangiava].
verb --> [guardava].
object(female) --> [insalata].
object(male) --> [cavolfiore].

2020-21 Prolog-2Methods in Computer Science education: Analysis

Output

[la, chirurgo, mangiava, la, insalata]
[la, chirurgo, mangiava, il, cavolfiore]
[la, chirurgo, guardava, la, insalata]
[la, chirurgo, guardava, il, cavolfiore]
[la, elefantessa, mangiava, la, insalata]
[la, elefantessa, mangiava, il, cavolfiore]
[la, elefantessa, guardava, la, insalata]
[la, elefantessa, guardava, il, cavolfiore]
[il, chirurgo, mangiava, la, insalata]
[il, chirurgo, mangiava, il, cavolfiore]
[il, chirurgo, guardava, la, insalata]
… %TASK: how can add number constraints?

2020-21 Prolog-2Methods in Computer Science education: Analysis

Common extensions

Grammars
grammar rules map easily to Prolog predicates, both for parsing

and for text generation

Constraints
the domain of the possible values of a variable can be constrained

in many ways (e.g. the sudoku game)

OOP
terms could represent objects and their properties
rules could represent methods

GUI
widgets, events, callbacks and so on

2020-21 Prolog-2Methods in Computer Science education: Analysis

Constraint example (Sudoku)

 DEMO

2020-21 Prolog-2Methods in Computer Science education: Analysis

Programming styles

Single threaded

Declarative: data AND rules
- declarative data => relational data representation (SQL-like)

Functional: rules as functions transforming data

Meta-programming: programs that BUILD programs

Predicate/Relations can be used in many directions

Recursion, recursion everywhere!

Parallelism in some particular Prolog (Sicstus, Parlog, GHC)

Simple multiprocessing with the ‘spawn’ library

2020-21 Prolog-2Methods in Computer Science education: Analysis

Prolog Pro/Cons for teaching

PRO

- Focus on data abstraction

- Focus on relations instead than
procedures

- easy Natural Language
processing and generation

- easy Symbolic manipulation
(Math, Algebra, Physics, …)

- AI

- Recursion everywhere!

CONS

- Not typed (but you can use
terms for dynamic typing)

- There is no really nice IDE
(or you can use Eclipse PDT)

- Recursion everywhere!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

