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Lists (dynamic, heterogeneous)

List = [ one, two, three, four ] % list syntax

[ Head | Tail ] = List     % how to extract the first element
Head = one      % fails if the list is empty
Tail = [ two, three, four ]

[ First, Second | Rest ] = List  % extracting first and second element
First  = one     % fails if the list has less than 2 elements
Second = two
Rest  = [ three, four ]

EmptyList = []      % the empty list

is_empty([]).      % test for empty list through unification

length([], 0).      % recursively compute the list length
length([H|T], N1) :- length(T,N), N1 is N + 1.
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Predicates on lists

% list concatenation/split (if used backward)

append([], B, B). % B if A is empty
% else attach the first in front of the result of appending the rest to A
append([ H | T], B, [H | C] ) :- append(T,B,C).

% member check/generation

member( A, [ A | _ ] ). % A is member if first element
member( A, [ _ | T] ) :- member(A, T). % or if member of the rest
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Predicates are relations 
and works in many ways/directions

append( [a], [b, c], L) => L = [a, b, c]
append( A,    [b, c], [a, b, c]) => A = [a]
append( A,    B,         [a, b, c]) => A = [], B = [a, b, c] ;

A = [a], B = [b, c] ;
A = [a, b], B = [c] ;
A = [a, b, c], B = [] ; fail

member( a, [a, b, c] ) => true
member( A, [a, b, c] ) => A=a or A=b or A=c
member( a, B) => B = [a|_] ; % list starting with a

B = [_,a|_] ; % list with a in 2° place
B = [_,_,a|_] ; % list with a in 3° place
… (infinite solutions)
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Functional programming

Predicates can be used as if they were functions or to test values
You just add an argument to collect the result

square( X, Result ) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test=compute+unify

You can map functions over lists (with the apply library)
List = [ 1, 2, 3, 4 ], maplist( square, List, List1 ).

=> List1 = [ 1, 4, 9, 16 ]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).

=> Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).

=> Odd = [1, 3] Even = [2, 4] 
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What if predicates are used “backward”?

% find a list X that is partitioned this way
partition(is_odd, X, [1,3], [2,4]).

 [1,3,2,4]  ;  [1,2,3,4]  ;  [1,2,4,3]  ;  [2,1,3,4]  ;  [2,1,4,3]  ; [2,4,1,3]

% What if we use maplist “backward”?
maplist(square, X, [1, 4, 9]).
   Arguments are not sufficiently instantiated
   In: [3] 1 is _1680*_1682

…
% We need a better definition of square(N,N2)
square(N, N2) :- nonvar(N), N2 is N*N.    %if N is known
square(N, N2) :- var(N), between(1,N2,N), N2 is N*N. % else
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Or else you could collect all solutions by:

All solutions of a Predicate: bagof(Term, Predicate, ListOfTerms)
?- bagof( odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

=> Odd = [ odd(3), odd(3) ]

Unique solutions: setof(Term, Predicate, Set)
 ?- setof( odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd) 

=> Odd = [ odd(3) ]

Just repeat DoSomething for each solution of a Predicate:
forall( Predicate, DoSomething )

?- forall( member(El, [1, 2, 3]), writeln(El) ).
1
2
3
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Meta-programming 

You can build terms from lists and viceversa
term( 1, two, three ) =.. [ term, 1, two, three ]

You can call/prove predicates built from data
call( Term, AdditionalArg, ... )

You can add/remove new facts or clauses to/from memory
asserta( Head :- Body )   assertz( Head :- Body )
asserta( Fact )      assertz( Fact )
retract( FactOrClause )
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Alternative syntax to write parsers/generators
Definite Clause Grammars (DCG)

    RULE READ

sentence --> 
subject, 
verb, 
complement.

%special: terminal tokens
verb --> [ run ].

   TRANSFORMED TO

sentence( Words, Rest3 ) :- 
 subject( Words, Rest1 ), 

verb( Rest1, Rest2 ), 
complement(Rest2, Rest3).

% simply expected as next token
verb( [ run | Rest ], Rest ).

Two arguments are added to each grammar rule:
- the list of input tokens 
- the remaining list of tokens not yet consumed
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Grammar example

sentence --> subject, verb, object.
subject --> article(Gender), actor(Gender).
object --> article(Gender), object(Gender).
article(female) --> [ la ].
article(male) --> [ il ].
actor(_) --> [ chirurgo ].
actor(female) --> [ elefantessa ].
actor(male)  --> [ elefante ].
verb --> [ mangiava ].
verb --> [ guardava ].
object( female ) --> [ insalata ].
object( male ) --> [ cavolfiore ].
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Output

[la, chirurgo, mangiava, la, insalata]
[la, chirurgo, mangiava, il, cavolfiore]
[la, chirurgo, guardava, la, insalata]
[la, chirurgo, guardava, il, cavolfiore]
[la, elefantessa, mangiava, la, insalata]
[la, elefantessa, mangiava, il, cavolfiore]
[la, elefantessa, guardava, la, insalata]
[la, elefantessa, guardava, il, cavolfiore]
[il, chirurgo, mangiava, la, insalata]
[il, chirurgo, mangiava, il, cavolfiore]
[il, chirurgo, guardava, la, insalata]
…     %TASK: how can add number constraints?
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Common extensions

Grammars 
grammar rules map easily to Prolog predicates, both for parsing 

and for text generation

Constraints
the domain of the possible values of a variable can be constrained 

in many ways (e.g. the sudoku game)

OOP
terms could represent objects and their properties
rules could represent methods

GUI
widgets, events, callbacks and so on
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Constraint example (Sudoku)

         DEMO
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Programming styles

Single threaded

Declarative: data AND rules
- declarative data => relational data representation (SQL-like)

Functional: rules as functions transforming data

Meta-programming: programs that BUILD programs

Predicate/Relations can be used in many directions

Recursion, recursion everywhere!

Parallelism in some particular Prolog (Sicstus, Parlog, GHC)

Simple multiprocessing with the ‘spawn’ library
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Prolog Pro/Cons for teaching

PRO

- Focus on data abstraction

- Focus on relations instead than 
procedures

- easy Natural Language 
processing  and generation

- easy Symbolic manipulation
(Math, Algebra, Physics, …)

- AI

- Recursion everywhere!

CONS

- Not typed (but you can use 
terms for dynamic typing)

- There is no really nice IDE
(or you can use Eclipse PDT)

- Recursion everywhere!
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