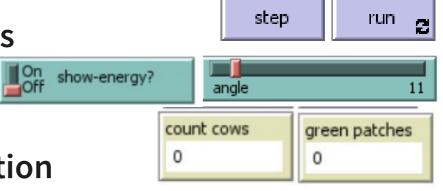


Andrea Sterbini – sterbini@di.uniroma1.it


NetLogo and NetLogoWeb turtles + patches = movable agent simulations

Full Logo:

- procedures + reporters (functions)
- lists and filters
- anonymous functions (parametric code blocks)
- new agent types with added properties (OOP without inheritance?)

Easy GUI construction:

- Buttons to call functions/procedures
- Sliders to change global variables
- Labelled boxes to show values
- Plot graphs of values during simulation
- 2 versions: 2D and 3D canvas showing turtles, patches and edges

3 type of Agents (+ custom agents)

- Turtles: movable entities
- Patches: the canvas is covered by a grid of unmovable squares
- e.g. the grass of a field (2 or 3 dimensional MATRIX concept!!!)
- **Edges:** links between two Turtles
- Other "animal groups" can be easily defined: - breed [singular plural]
- <u>Separate breeds</u> can have <u>separate sets of properties</u>: - cows-own [energy]
- The Turtles' set contains all other breeds (like "object" in Java)
- An agent can change its breed type! (set breed 'breedname')

Methods in Computer Science education: Analysis

Programming style

Single-threaded

Procedural

Functional !!!

Data types:

- lists
- arrays
- list-based operations
- <u>anonymous functions</u>

(the order of set elements is random)

("to" procedures)

("to-report" functions)

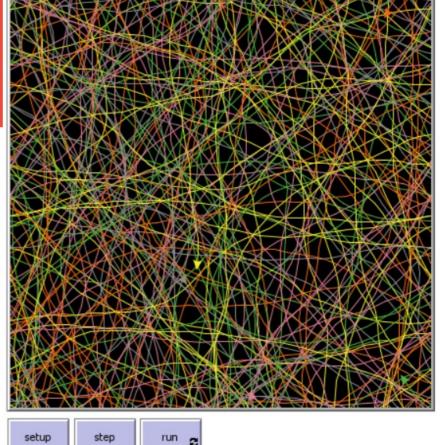
(immutable, untyped)
(mutable, untyped)
(map/filter/collect/ask/...)
(code blocks)

A LOT of built-in commands are functions/filters THUS the language is very very readable

Methods in Computer Science education: Analysis

NetLogo and other Logos

Small syntactic differences


to-report instead thantoreportinstead thanoutput[args]instead than:argsome precedence differences

Methods in Computer Science education: Analysis

Demo 1: Brownian motion

- start with N randomly placed turtles
- move each turtle
 - by 1 step
 - by changing slightly its heading
- NO need for loops, just use repeating button
- **Globals: (interactive)**
- max turn angle, # of turtles

```
to step
   ask turtles [
    set heading (heading + (random (2 * angle)) - angle)
    forward 1
   ]
   tick
end
```

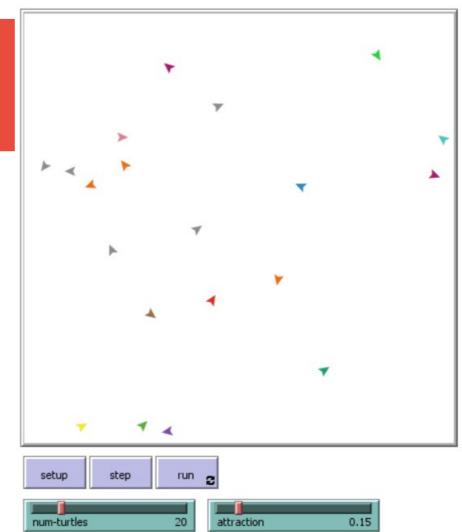

Methods in Computer Science education: Analysis

Demo 2: a flock of birds

Here each turtle should:

- turn towards her nearest neighbour

- and move


Globals:

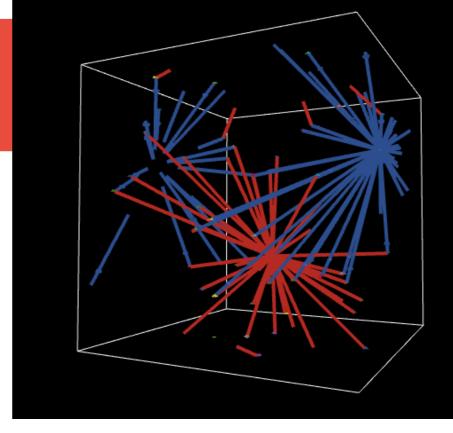
- # of turtles, attraction towards nearest

```
to-report closest-turtle
  report min-one-of (other turtles) [
      distance myself ]
end
```

```
to turn-towards [somebody]
    let difference subtract-headings heading (towards somebody)
    set heading (heading + (attraction * difference)
end
```

Methods in Computer Science education: Analysis

2020-21


NetLogo

Demo 3: 3D links

- N turtles in random 3D position

 2 random turtles are connected to all other turtles with directed and undirected edges

- NOTICE: the world is a TORUS!


```
undirected-link-breed [ ulinks ulink ]
directed-link-breed [ dlinks dlink ]
to setup
    clear-all
    create-turtles N [ setxyz random-xcor random-ycor random-zcor ]
    ask turtle random N
    [ create-ulinks-with other turtles [ set color red ] ]
    ask turtle random N
    [ create-dlinks-to other turtles [ set color blue ] ]
end
```

Demo 4: cows on grass

Cows:

- loose 1 energy per tick
- move at random
- eat grass gaining 10 e.
- if energy>50 spawn

Grass:

- new grass grows with 3% probability

Globals:

- show cow energy?, energy to give birth, energy from grass

setup

green patches

50

10

355

show-energy?

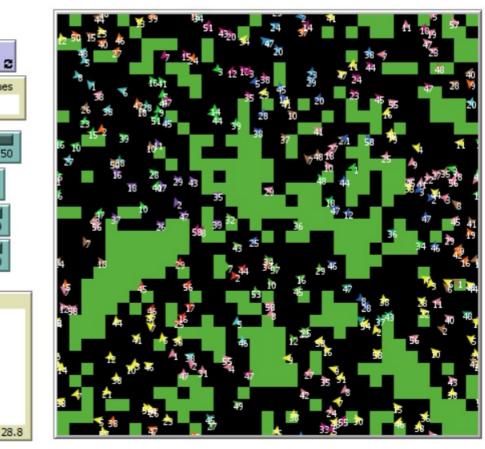
Totals

energy-from-grass

count turtles

321

numbe


1350

totals

Display:

- # of cows, # of grass patches

Methods in Computer Science education: Analysis

2020-21

NetLogo

Demo 3: implementation ...

```
breed [ cows cow ]
cows-own [energy]
... (setup removed)
to go
 if ticks >= 500 [ stop ]
 move-cows
 eat-grass
 check-death
 reproduce
 regrow-grass
 tick
end
```

```
to eat-grass
 ask cows [
  if pcolor = green [
    set pcolor black
    set energy (energy +
        energy-from-grass)
  ifelse show-energy?
    [ set label energy ]
    [ set label "" ]
end
```

Methods in Computer Science education: Analysis

... continue

to move-cows

```
ask cows [
right random 360
forward 1
set energy energy - 1
]
end
```

to reproduce

end

```
ask cows [

if energy > birth-energy [

set energy energy - birth-energy

hatch 1 [ set energy birth-energy ]
```

to check-death ask cows [if energy <= 0 [die] end to regrow-grass ask patches [if random 100 < 3 [set pcolor green

end

Methods in Computer Science education: Analysis

Extensions!!!

Arduino	GoGo boards	
CSV	Database	Profiler
Continuous f. optimiz.	Function roots	Matrix math
Modular models	Linear programming	Time series
Clustering	Freq. Distributions	Statistics
Cognitive Agents	Q-learning	Fuzzy logic
GIS	Epidemiology	Physics
Python	R	Scala
Webcam	Isometric visualization	Web

Methods in Computer Science education: Analysis

Other ideas

<u>HubNet:</u>	<u>network of interacting models in the class</u>
Modeling Commons:	cooperatively shared repository of models
Behavior Space:	hyper-parameters optimization
System Dynamics:	high-level models
Mathematica Link:	call Mathematica from Netlogo

DEMO

Methods in Computer Science education: Analysis