USA: Advanced Placement curriculum Computer Science Principles

USA: AP <u>Computer Science Principles</u> (an Advanced Placements course)

- AP: Advanced courses for <u>High School students</u> (many subjects)
- Computational Thinking practices vs. main topics
- **P1: Connecting Computing**
- P2: Creating Computational Artifacts
- **P3: Abstracting**
- P4: Analyzing Problems and Artifacts
- **P5: Communicating**
- P6: Collaborating

- **Big Idea 1: Creativity**
- **Big Idea 2: Abstraction**
- **Big Idea 3: Data and Information**
- **Big Idea 4: Algorithms**
- **Big Idea 5: Programming**
- **Big Idea 6: The Internet**
- **Big Idea 7: Global Impact**

Methods in Computer Science education: Analysis

USA: Many CSP curricula available

Curriculum	Course Delivery	Programming Language / Environment
CodeCombat	Web Based	JavaScript / Python / HTML
The Beauty and Joy of Computing	Web Based edX	Snap!
Mobile CSP	Web Based	App Inventor
UTeach CSP	Web Based	Scratch / Processing
PLTW CSP	Canvas LMS Printable Student Content	Scratch / App Inventor / Python / HTML
Code.org CSP	Web Based	App Lab / JavaScript (Blockly)
CS50 AP	Wikispaces	Scratch / C
CS Matters	Face to Face	Python
EarSketch	Web Based: make music	Python / JavaScript
CodeHS	Web Based	JavaScript
Methods in Computer Science education: Analysis2020-21AP-CSI		

The BJC curriculum (Beauty and Joy of Computing)

https://bjc.edc.org

- **Unit 1: Introduction to Programming**
- **Unit 2: Abstraction**
- **Unit 3: Data Structures**
 - **Practice CREATE TASK**
- **Unit 4: How the Internet Works**
- **Unit 5: Algorithms and Simulations**
 - **CREATE TASK**
- Unit 6: How Computers Work
- Unit 7: Fractals and Recursion
- **Unit 8: Recursive Functions**

Methods in Computer Science education: Analysis

<== EXAM

Unit 1: Introduction to Programming

5 Lab units (plus some optional)

- Pair programming: Students work in pairs and swap role during the unit
- Discussion of what to do as a way to enforce ANALYSIS before implementation
- 1) move a sprite randomly, greet, save the program
- 2) Gossiping Sprites: use functions to select a random message to say, <u>define functions</u>, ask something
- 3) Polygons: draw, repeat, ask numbers
- 4) Protect Privacy (focus on social issues)
- 5) Follow the mouse or another sprite
- Optional projects: Pong, drawing, random sentences,

Methods in Computer Science education: Analysis

Unit 2: Abstraction

1) Variables: local (number guessing game) and global (score of the game), Import/Export blocks

2) Lists: shopping list app, quiz app

3) Making decisions: If-the-else, Predicates, Boolean expressions, list filters

4) Math library: making new math functions

5) Copyright and Fair Use (focus on social issues)

Optional: modelling language (plurals), mastermind, kaleidoscope, automated fortune teller

NOTICE: the suggested programming style is FUNCTIONAL

Methods in Computer Science education: Analysis

Unit 3: Data Structures

- 1) Complex drawings (cycles)
- 2) ADT: managing a contact list (name surname phone number ...), by defining a its builder and getters
- 3) Tic-tac-toe: check for winning game, lists comparison, map
- 4) Robots and AI: introduction and implications to Society
- 5) Computers and work: new works, impact on work

Optional projects: drawings, animations, music

Methods in Computer Science education: Analysis

Kids practice how to organize the design and development of the AP create task exam with the help of teachers and peers

- 1) Using a Development Process to Organize Your Coding
- 2) Choosing Your Project
- 3) Implementing Your Development Process
- 4) Testing Your Project
- 5) Communicating About Your Project
- 6) Evaluating Your Work

During the exam they will have to work by themselves

Methods in Computer Science education: Analysis

Unit 4: How the Internet Works

1) Computer Networks: Network redundancy, internet addresses, history

- 2) Cybersecurity, cryptography: Caesar cypher project
- 3) Social networks, cyberbullying, censorship, search engines
- 4) Data representation and compression

Unit 5: Algorithms and Simulations

- 1) Search algorithms and efficiency
- 2) Models and simulations: distributions of flipping a coin, spread of a virus, bank queue
- 3) Analysing data:
- 4) Unsolvable and Undecidable problems, Paradoxes, the Halting problem
- 5) Computer and Wars: cyberwar, drones, autonomous weapons, ethics
- 6) Tic-Tac-Toe with a Computer Player
- EXAM (CREATE TASK)

Methods in Computer Science education: Analysis

Unit 6: How Computers Work

(optional)

1) Computer abstraction hierarchy

Application/Prog. Lang./Libraries/OS/HW/Components/IC/Gates/Transistors

2) History and Impact of Computers

Methods in Computer Science education: Analysis

Unit 7: Fractals and Recursion

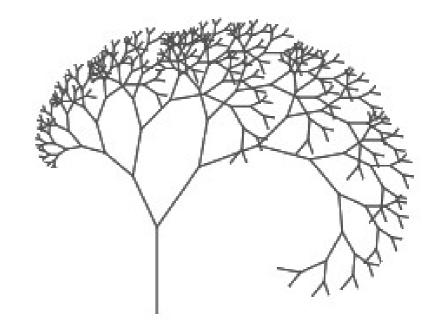
(optional)

1) Trees in a Forest

Recursive case

Base case

2) Recursion Projects


Triangle Fractal

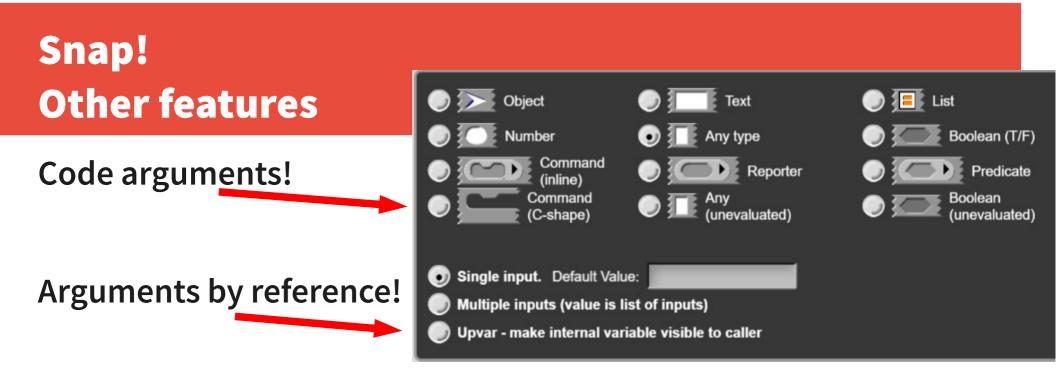
Koch Snowflake

Lévy C-Curve Fractal

Fractals in Nature

Recursive Mondrian

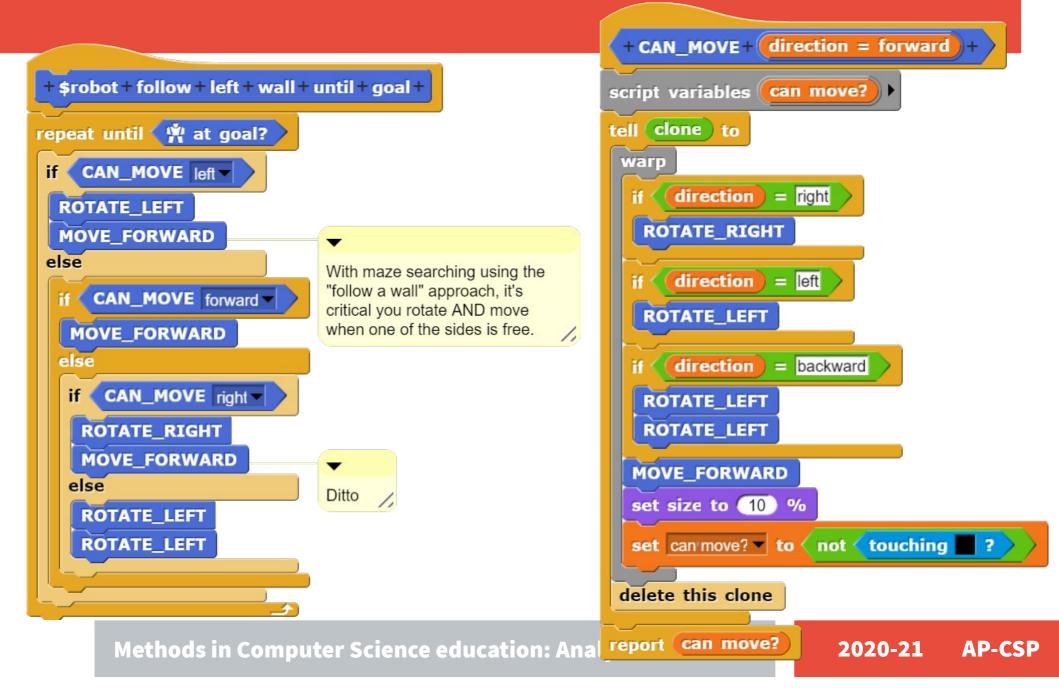
Methods in Computer Science education: Analysis


Unit 8: Recursive Functions

(optional)

2020-21

AP-CSP


- 1) Recursive Reporters (functions)
- 2) Base conversion
- 3) Subsets
- 4) Higher Order Functions (on lists)
- Optional Projects: Pascal/Tartaglia triangle, Sorting

This allows building meta-programming blocks/functions!

Robot maze exploration example

