
Prolog

 Andrea Sterbini – sterbini@di.uniroma1.it

mailto:sterbini@di.uniroma1.it
https://creativecommons.org/licenses/by-nc-sa/4.0

PrologMethods in Computer Science education: Analysis2

Prolog: logic programming
Created in France by Alain Colmerauer & co. at Marseille, France in
the ‘70 for AI and computational linguistics

Declarative style of:
- representing data/relations (facts)
- representing how to solve a problem (rules/clauses)

Used for:
- AI: natural language parsing, planning, natural language
generation, theorem proving, ...
- meta-programming (programs that create programs)
- ...

PrologMethods in Computer Science education: Analysis3

Data types and program elements

Integers 42 Float 3.14 Strings “Hello world”
Atoms andrea Lists [one, 2, 3.14, “four”]
Terms height(andrea, 186)

Variables are NOT typed, and start with Capital or _underscore
the assignment is UNDONE on backtrack!!!

Facts describe relations that are always true

 parent(maurizio, andrea). % Maurizio is parent of Andrea

Predicates/rules/clauses describe conditional relations
ancestor(Kid, Ancestor) :- % Ancestor is ancestor of Kid IF
 parent(Somebody, Kid), % there exists Somebody parent of Kid
 ancestor(Somebody, Ancestor). % that has Ancestor as an ancestor

PrologMethods in Computer Science education: Analysis4

Program execution = query for a proof

A program execution is the response to a query asking the system to
find a proof that something (a fact) is true

The system looks for a way to prove your query by searching:
- if a fact is directly available to satisfy your query
- or else if there exists a predicate that would satisfy your query:

- then to prove it all its preconditions must be proved

If more than one ways exists to satisfy a query, all are tried in order
(by backtracking/undoing last choice if some of the subqueries fails)

The order of search is the order of the facts/clauses in the program

Values assigned to the variables to satisfy the query are returned

PrologMethods in Computer Science education: Analysis5

Example: a small genealogy problem

From the ‘parent’ relation
mario

carla maurizio ... dina roberto

... ... gianluca andrea nicoletta ...

davide teresa

If we want teresa’s ancestors we could climb the parent relation

PrologMethods in Computer Science education: Analysis6

Representing facts AND relations (deduction rules)

 FACTS

parent(mario, maurizio).
parent(mario, carla).
parent(maurizio, andrea).
parent(maurizio, gianluca).
parent(andrea, teresa).
parent(andrea, davide).
parent(dina, nicoletta).
parent(roberto, nicoletta).
parent(nicoletta, teresa).
parent(nicoletta, davide).

 RULES

ancestor(Kid, Ancestor) :-
parent(Ancestor, Kid).

ancestor(Kid, Ancestor) :-
parent(P, Kid),
ancestor(P, Ancestor).

 QUERY

?- ancestor(teresa, A).
A = andrea ; A = nicoletta ;
A = maurizio ; A = mario ;
A = dina ; A = roberto ;
false (no more solutions)

PrologMethods in Computer Science education: Analysis7

Many queries from the same facts/rules

% find known dina’s nephews
?- ancestor(N, dina).

N = nicoletta ; N = teresa ; N = davide ; false (no more solutions)

% find known siblings
?- parent(Parent, Kid1), parent(Parent, Kid2), Kid1 \= Kid2.

Parent = mario, Kid1 = maurizio, Kid2 = carla ;
Parent = mario, Kid1 = carla, Kid2 = maurizio ;
Parent = maurizio, Kid1 = andrea, Kid2 = gianluca ;
Parent = maurizio, Kid1 = gianluca, Kid2 = andrea ;
Parent = andrea, Kid1 = teresa, Kid2 = davide ;
Parent = andrea, Kid1 = davide, Kid2 = teresa ;
Parent = nicoletta, Kid1 = teresa, Kid2 = davide ;
Parent = nicoletta, Kid1 = davide, Kid2 = teresa ; false

PrologMethods in Computer Science education: Analysis8

Procedural interpretation of a Prolog program

You can see the rules/facts of your program as if they were a set of
subroutines, each possibly with multiple alternative implementations

When you query for a given term, you CALL the corresponding set of
clauses, which are tried one at a time

When a clause is called, its inner prerequisites are CALLED sequentially

When it FAILS, another clause is tried for the same term (by
backtracking to the most recent choice, undoing it and trying the next)

This implies a DFS search of a solution in the execution tree

The first solution found is returned with its variable assignments

If you ask for another solution (tab or ;) Prolog bactracks and continues

PrologMethods in Computer Science education: Analysis9

Multiple clauses as if-then-else? (not exactly)

When a predicate/rule has multiple clauses they are tried in the order of
appearance in the file (by backtrack)

(this IS NOT an if-then-else, as they are ALL tried)

You could simulate if-then-else by using exclusive preconditions
clause(…) :- condition, then.
clause(…) :- not(condition), else.

OR you can commit (!) to one clause as soon the condition is met
clause(…) :- condition, !, then. % no backtrack after ‘!’
clause(…) :- else.

The ‘!’ (cut) predicate removes all remaining choices
and commits the execution to the only clause containing it
(BUT BEWARE OF FAILURES AFTER THE CUT!)

PrologMethods in Computer Science education: Analysis10

Unification = Matching between data-structures

A powerful term-matching mechanism is used to automatically
pack/unpack terms and data structures used in clauses

E.g.

 parent(Dad, andrea, male) = parent(maurizio, andrea, Sex)
is true when Dad = maurizio AND Sex = male

When they contains variables, Prolog looks for a suitable
assignment of the variables (on both sides)
Notice that the term functor and arity (# of args) should match

(unification is way more powerful than Python multiple assignment
used to pack/unpack, as unification goes both ways)

PrologMethods in Computer Science education: Analysis11

Assignment …. normally through unification
except for math computation

Unification is used to pack/unpack data structures (terms, lists, …)
term(X, two, three(X)) = term(four, B, C)
=> X=four B=two C=three(four)

When some computation is required we use the ‘is’ predicate

 A is max(3, 5) => A=5
B is A * 10 => B=50
C is 12 mod 7 => C=5

Functions available:
min, max, arithmetic, random, trigonometric, logarithms
logical (bits), ascii, ...

PrologMethods in Computer Science education: Analysis12

Lists (dynamic, heterogeneous)

List = [one, two, three, four] % list syntax

[Head | Tail] = List % how to extract the first element
Head = one % fails if the list is empty
Tail = [two, three, four]

[First, Second | Rest] = List % extracting first and second element
First = one % fails if the list has less than 2 elements
Second = two
Rest = [three, four]

EmptyList = [] % the empty list

is_empty([]). % test for empty list through unification

length([], 0). % recursively compute the list length
length([H|T], N1) :- length(T,N), N1 is N + 1.

PrologMethods in Computer Science education: Analysis13

Predicates are relations
and works in many ways/directions

append([a], [b, c], L) => L = [a, b, c]
append(A, [b, c], [a, b, c]) => A = [a]
append(A, B, [a, b, c]) => A = [], B = [a, b, c] ;

A = [a], B = [b, c] ;
A = [a, b], B = [c] ;
A = [a, b, c], B = [] ; fail

member(a, [a, b, c]) => true
member(A, [a, b, c]) => A=a or A=b or A=c
member(a, B) => B = [a|_] ; % list starting with a

B = [_,a|_] ; % list with a in 2° place
B = [_,_,a|_] ; % list with a in 3° place
… (infinite solutions)

PrologMethods in Computer Science education: Analysis14

Functional programming

Predicates can be used as if they were functions or to test values
square(X, Result) :- Result is X * X. % function
is_odd(X) :- 1 is X mod 2. % test

You can map functions over lists (with the apply library)
List = [1, 2, 3, 4], maplist(square, List, List1).

=> List1 = [1, 4, 9, 16]

Or get all elements satisfying some property
List = [1, 2, 3, 4], include(is_odd, List, Odd).

=> Odd = [1, 3]
List = [1, 2, 3, 4], partition(is_odd, List, Odd, Even).

=> Odd = [1, 3] Even = [2, 4]

PrologMethods in Computer Science education: Analysis15

Repeating a query N times

Repeating N times is normally done through recursion
repeat_something(0). % base case
repeat_something(N) :-

 N > 0, % we are in the recursive case
 do_something,
 N1 is N-1,

 repeat_something(N1).
NOTICE: in this case you CAN collect results through the predicate variables

Else you can repeat some operation by failing, backtracking and retrying
 repeat_something(N) :-
 between(1, N, X), % X=1, 2, 3, 4, 5 … N by backtracking

 do_something,
 fail. % to avoid failure of the predicate

 repeat_something(_). % add a default “always true” clause
NOTICE: in this case you CANNOT collect results (unless you use side-effects)

PrologMethods in Computer Science education: Analysis16

Or else you could collect all solutions by:

Collect all solutions of a Predicate with bagof(Term, Predicate, ListOfTerms)
?- bagof(odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

=> Odd = [odd(3), odd(3)]

Or all unique solutions with predicate setof(Term, Predicate, Set)
 ?- setof(odd(X), (member(X, [3, 2, 3, 4]), 1 is X mod 2), Odd)

=> Odd = [odd(3)]

Or just repeat DoSomething for each of the solutions of a Predicate with
forall(Predicate, DoSomething)

?- forall(member(El, [1, 2, 3]), writeln(El)).
1
2
3

PrologMethods in Computer Science education: Analysis17

Meta-programming and alternative syntax (DCG)

You can build terms from lists and viceversa
term(1, two, three) =.. [term, 1, two, three]

You can call/prove predicates built from data
call(Term)

You can add/remove new facts or clauses to the program
asserta(Head :- Body) assertz(Head :- Body)
asserta(Fact) assertz(Fact)
retract(FactOrClause)

You can use an alternative syntax (e.g. Definite Clause Grammars)
sentence --> subject, verb, complement. % automatically transformed to
sentence(Words, R3) :-
 subject(Words, R1), verb(R1, R2), complement(R2, R3).
verb --> [run]. % is transformed to

 verb([run | Rest], Rest).

PrologMethods in Computer Science education: Analysis18

Common extensions

Grammars
grammar rules map easily to Prolog predicates, both for parsing

and for text generation

Constraints
the domain of the possible values of a variable can be constrained

in many ways (e.g. the sudoku game)

OOP
terms could represent objects and their properties
rules could represent methods

GUI
widgets, events, callbacks and so on

PrologMethods in Computer Science education: Analysis19

Grammar example

Sentence --> subject, verb, object.
subject --> article(Gender), actor(Gender).
object --> article(Gender), object(Gender).
article(female) --> [la]. article(male) --> [il].
actor(_) --> [chirurgo].
actor(female) --> [elefantessa]. actor(male) --> [elefante].
verb --> [mangiava].
verb --> [guardava].
object(female) --> [insalata].
object(male) --> [cavolfiore].

PrologMethods in Computer Science education: Analysis20

Constraint example (Sudoku)

PrologMethods in Computer Science education: Analysis21

Programming styles

Single threaded

Declarative: data AND rules
- declarative data => relational data representation (SQL-like)

Functional: rules as functions transforming data

Meta-programming: programs that BUILD programs

Predicate/Relations can be used in many directions

Recursion, recursion everywhere!

Parallelism in some particular Prolog (Sicstus, Parlog, GHC)

Simple multiprocessing with the ‘spawn’ library

PrologMethods in Computer Science education: Analysis22

Prolog Pro/Cons for teaching

PRO

- Natural Language processing
and generation

- Symbolic manipulation
(Math, Algebra, Physics, …)

- Recursion everywhere!

CONS

- Not typed (but you can use
terms for dynamic typing)

- There is no nice IDE

- Recursion everywhere!

PrologMethods in Computer Science education: Analysis23

Demo

DEMO

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

