USA: Advanced Placement curriculum Computer Science Principles

USA: AP Computer Science Principles (an Advanced Placements course)

AP: Advanced courses for High School students (many subjects)

<u>Computational Thinking practices ==> Learning units</u>

P1: Connecting Computing Big Idea 1: Creativity

P2: Creating Computational Big Idea 2: Abstraction

Artifacts

P3: Abstracting

Big Idea 4: Algorithms

P4: Analyzing Problems and
Big Idea 5: Programming

Artifacts

P5: Communicating

Big Idea 6: The Internet

P6: Collaborating

Big Idea 3: Data and Information

Big Idea 7: Global Impact

USA: Many CSP curricula available

Curriculum	Course Delivery	Programming Language <i>l</i> Environment
CodeCombat	Web Based	JavaScript / Python / HTML
The Beauty and Joy of Computing	Web Based edX	Snap!
Mobile CSP	Web Based	App Inventor
UTeach CSP	Web Based	Scratch / Processing
PLTW CSP	Canvas LMS Printable Student Content	Scratch / App Inventor / Python / HTML
Code.org CSP	Web Based	App Lab / JavaScript (Blockly)
CS50 AP	Wikispaces	Scratch / C
CS Matters	Face to Face	Python
EarSketch	Web Based: make music	Python / JavaScript
CodeHS	Web Based	JavaScript

The BJC curriculum (Beauty and Joy of Computing)

https://bjc.edc.org

Unit 1: Introduction to Programming

Unit 2: Abstraction

Unit 3: Data Processing and Lists

Unit 4: How the Internet Works

Unit 5: Algorithms and Simulations

Unit 6: How Computers Work

Unit 7: Fractals and Recursion

Unit 8: Recursive Functions

<== EXAM

Unit 1: Introduction to Programming

5 Lab units (plus some optional)

Pair programming: Students work in pairs and swap role during the unit

<u>Discussion of what to do</u> as a way to enforce ANALYSIS before implementation

- 1) move a sprite randomly, greet, save the program
- 2) Gossiping Sprites: use functions to select a random message to say, <u>define functions</u>, ask something
- 3) Polygons: draw, repeat, ask numbers
- 4) Protect Privacy (focus on social issues)
- 5) Follow the mouse or another sprite

AP-CSP

Unit 2: Abstraction

- 1) <u>Variables</u>: local (number guessing game) and global (score of the game), Import/Export blocks
- 2) <u>Abstract Data Types</u> (points) to draw polygonals described as lists of <u>points</u>, capture mouse clicks, draw Mandalas
- 3) <u>Predicates and if-then-else</u>, define new predicates, use <u>lists</u>, list filters,
- 4) Nested Repeat (move a robot/sprite in a fixed maze), <u>Fractals</u> and <u>functions</u>, recursion
- 5) Copyright and Fair Use (focus on social issues)

Unit 3: Data Processing and Lists

- 1) ADT: managing a contact list (name surname phone number ...)
- 2) Clones and agent variables (check for winning TIC TAC TOE game), lists comparison, map
- 3) Robots and AI: introduction and implications to Society
- 4) Graph visualization of data (build a plot function)
- 5) Big data: introduction and examples

Unit 4: How the Internet Works

- 1) Network redundancy, internet addresses, history
- 2) Communication protocols, IP addresses, TCP, Layers
- 3) Cybersecurity, cryptography
- 4) Social networks, cyberbullying, censorship, search engines
- 5) Impact of computer on work (past and future), gig economy

Unit 5: Algorithms and Simulations

- 1) Search algorithms
- 2) Models and simulations: distributions of flipping a coin, spread of a virus, bank queue
- 3) Algorithm efficiency: timing a block, time vs. input size
- 4) Unsolvable and Undecidable problems, Paradoxes, the Halting problem
- 5) Computer and Wars: cyberwar, drones, autonomous weapons, ethics

Unit 6: How Computers Work

1) Computer abstraction hierarchy

Application/Prog. Lang./Libraries/OS/HW/Components/IC/Gates/Transistors

2) Data Representation and Compression

Binary, Hex, ..., compression

3) History and Impact of Computers

EXAM

Unit 7: Fractals and Recursion

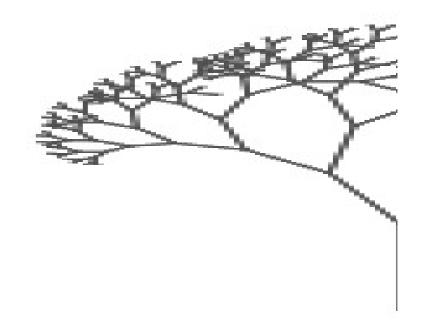
(optional)

1) Trees in a Forest

Recursive case

Base case

2) Recursion Projects


Triangle Fractal

Koch Snowflake

Lévy C-Curve Fractal

Fractals in Nature

Recursive Mondrian

Unit 8: Recursive Functions

(optional)

- 1) Recursive Reporters (functions)
- 2) Sorting
- 3) Recursive Reporter Projects

Pascal/Tartaglia triangle, Subsets, Base conversion

4) List manipulations implemented as recursive functions

Walk a list, map, keep

Functions as parameters (quoted code)