
Giorgio Richelli
giorgio_richelli@it.ibm.com

Major Requirements of an Operating SystemMajor Requirements of an Operating System

✔ Interleave the execution of the number of processes
- maximize resource utilization
- provide reasonable response time

✔ Allocate resources to processes
✔ Provide facilities:

- creation of processes by users
- inter-process communication
- ….

Giorgio Richelli
giorgio_richelli@it.ibm.com

The Process (abstraction)The Process (abstraction)

✔ Also called a <task>
✔ Execution of an individual program
✔ Composed by:

- an executable program
- associated data
- execution context

✔ It can be traced
- list the sequence of instructions that execute

Giorgio Richelli
giorgio_richelli@it.ibm.com

The Process (UNIX)The Process (UNIX)

✔ Lifetime:
- fork()/vfork()→ exec()→ exit()

✔ Well-defined hierarchy:
- parent,child
- orphans

 the parent process is terminated
 Inherited by <init>

✔ System processes:
- <init> is the most important
- Kernel threads (memory mgt, I/O, etc)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Giorgio Richelli
giorgio_richelli@it.ibm.com

SchedulerScheduler

✔ A kernel service that assign the processor to a process,
based on policies & priorities

✔ It should prevents a single process from monopolizing
processor time

✔ It cannot just select the process that has been in the queue
the longest, e.g. it may be blocked (waiting for an event
such as I/O, etc.)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process CreationProcess Creation

✔ A process is always spawned by another, existing, process
(the <parent>)

✔ E.g.:
- Job Scheduler (submission of a batch job)
- Upon user logon (getty)
- By OS, to provide a system service, such as printing

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process TerminationProcess Termination

Reason:
✔ Voluntarily:

- the process executes a request to terminate (exit())
✔ Killed by the system:

- On error and fault conditions

Giorgio Richelli
giorgio_richelli@it.ibm.com

Reasons for (abnormal) Reasons for (abnormal)
TerminationTermination
✔ Time limit exceeded
✔ Memory unavailable
✔ Bounds violation
✔ Arithmetic error
✔ Timer overrun (e.g. SIGALRM)

- process waited longer than a specified maximum for an event

Giorgio Richelli
giorgio_richelli@it.ibm.com

Reasons for (abnormal) Reasons for (abnormal)
TerminationTermination
✔ Invalid instruction

- e.g trying to execute data
✔ Privileged instruction
✔ Operating system intervention (such as when deadlock

occurs)
✔ Parent terminates → child processes may be terminated
✔ Request by another process (kill())

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process State Transition Diagram with Two Process State Transition Diagram with Two
Suspend StatesSuspend States

New

Admit Admit Suspend

Dispatch

Time out

Ready,
suspend

Ready

Blocked
Blocked,
suspend

Event
Occurs

Activate

Event
Occurs

Activate

Suspend

Running Exit

Event
Wait

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process CreationProcess Creation

✔ Assign a unique process identifier
✔ Allocate space for the process
✔ Initialize process control blocks
✔ Set up appropriate linkages, e.g:

- add new process to linked list used for scheduling queue
- maintain an accounting file
- ..

Giorgio Richelli
giorgio_richelli@it.ibm.com

When to Switch a ProcessWhen to Switch a Process
✔ Interrupts

- Clock (time slice expired)
- I/O

✔ Memory fault
- memory page is not mapped

✔ Trap (sw interrupt)
- error occurred
- may cause process to be moved to <Exit> state

✔ System call (also a sw int.)
- such as open()

Giorgio Richelli
giorgio_richelli@it.ibm.com

UNIX Process StateUNIX Process State

✔ Initial (idle)
✔ Ready to run
✔ Kernel/User running
✔ Zombie
✔ Asleep
 + (4BSD): stopped/suspend

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process states and state transitionsProcess states and state transitions

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process ContextProcess Context

✔ User address space:
- code, data, stack, shared memory regions

✔ Control information:
- u area, proc, kernel stack, addr.trans. map

✔ Credentials: UID & GID
✔ Environment variables:

- inherited from the parent
✔ Hardware context(in PCB of u area):

- PC, SP, PSW, MMR, FPU

Giorgio Richelli
giorgio_richelli@it.ibm.com

User CredentialsUser Credentials

✔ UserID, GroupID
- Superuser: UID=0, GID=0

✔ Real IDs:
- login, send signals

✔ Effective IDs:
- file creation and access

✔ exec():
- suid/sgid mode: set to that of the <owner of the file>

Giorgio Richelli
giorgio_richelli@it.ibm.com

Who's whoWho's who

✔ int getuid();
- returns userid

✔ int getgid()
- returns groupid

✔ int geteuid();
- return <effective> userid

✔ int getegid();
- returns <effective> groupid

Giorgio Richelli
giorgio_richelli@it.ibm.com

A typical process hierarchy in 4.3BSD UNIXA typical process hierarchy in 4.3BSD UNIX

Process ID Parent Process ID

Ptr to parent's proc

Ptr to the youngest child
Ptr to the younger sibling

Giorgio Richelli
giorgio_richelli@it.ibm.com

The UNIX kernelThe UNIX kernel

✔ A special program that runs directly on the hardware.
✔ Implements the process model and services.
✔ Resides on disk
✔ /vmunix, /unix, /vmlinuz, ...
✔ Bootstrapping: loads the kernel.
✔ Initializes the system and sets up the environment, remains

in memory before shut down

Giorgio Richelli
giorgio_richelli@it.ibm.com

UNIX Kernel ServicesUNIX Kernel Services

✔ Provides System Calls
✔ Interfaces with hardware devices
✔ Manages exceptions

- Divide by 0, overflowing user stack
✔ Handles Interrupts
✔ Implement other facilities (vm management, networking, ..)

Giorgio Richelli
giorgio_richelli@it.ibm.com

The Kernel interacts with processes and devicesThe Kernel interacts with processes and devices

Giorgio Richelli
giorgio_richelli@it.ibm.com

Mode,Space & ContextMode,Space & Context

✔ Some critical resources must be protected
✔ Virtual Memory

- VM space
- Address Translation Maps
- Memory Management Unit

✔ Kernel Mode
- more privileged, kernel functions

✔ User Mode
- less privileged, user functions

Giorgio Richelli
giorgio_richelli@it.ibm.com

Kernel dataKernel data

✔ One instance of the kernel
- kernel stack

✔ Per-process objects
- info. about a process

✔ Global data structures
✔ Current process

✔ System call → mode switch

Giorgio Richelli
giorgio_richelli@it.ibm.com

ContextContext

✔ Must be re-entrant
- several processes may be involved in kernel activities

concurrently.

✔ Execution context
- Process
- System (Interrupt)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Executing in Kernel ModeExecuting in Kernel Mode
✔ Different types of events:

- Device interrupts
- Exceptions
- Traps or software interrupts

✔ Dispatch table

✔ System context: interrupts
✔ Process context: traps, exceptions & software interrupts

Giorgio Richelli
giorgio_richelli@it.ibm.com

Execution mode and ContextExecution mode and Context

Giorgio Richelli
giorgio_richelli@it.ibm.com

The System Call InterfaceThe System Call Interface
✔ syscall()

- kernel mode
- process context
- Copy arguments , save hardware context on the kernel stack
- Use system call number to index dispatch vector
- Return results in registers, restore hardware context, user

mode, control back to the library routine.

Giorgio Richelli
giorgio_richelli@it.ibm.com

New Processes & ProgramsNew Processes & Programs
int fork()
✔ creates a new process.
✔ returns 0 to the child, PID to the parent
int exec*(..)
✔ begins to execute a new program

Giorgio Richelli
giorgio_richelli@it.ibm.com

Using fork & execUsing fork & exec

if ((ChildPid = fork())==0){
 /* child code*/
 … …

if (execve(“new program”),…)<0) {
perror(“execve failed.”);
exit(-1)

}
} else if (ChildPid <0) {

perror(“fork failed”);
exit(-1)

}
/*parent continues here*/

Giorgio Richelli
giorgio_richelli@it.ibm.com

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process CreationProcess Creation

Creates (almost) an exact clone of the parent:
✔ Reserve swap space for the child
✔ Allocate a new PID and proc structure for the child
✔ Initialize proc structure
✔ Allocate ATM (address translation map)
✔ Allocate u_area and copy from parent
✔ Update the u_area to refer to the new ATM & swap space
✔ Add the child to the set of processes sharing the text region

of the program

Giorgio Richelli
giorgio_richelli@it.ibm.com

Process CreationProcess Creation

✔ Duplicate the parent’s data and stack regions update ATM
to refer to these new pages.

✔ Acquire references to shared resources inherited by the
child

✔ Initialize the hardware context
✔ Make the child runnable and put it on a scheduler queue
✔ Arrange to return 0 to child
✔ Return the PID to the parent

Giorgio Richelli
giorgio_richelli@it.ibm.com

 Fork OptimizationFork Optimization

✔ It is wasteful to immediately make a copy of the address
space of the parent

✔ Copy-on-write:
- only the pages that are modified must be copied

✔ vfork():
- parent loans the address space and blocks until the child

returns

Giorgio Richelli
giorgio_richelli@it.ibm.com

Invoking a New ProgramInvoking a New Program

Process address space:
✔ Text (code)
✔ Initialized data
✔ Uninitialized data
✔ Shared memory
✔ Shared libraries
✔ Heap
✔ Stack

Giorgio Richelli
giorgio_richelli@it.ibm.com

Awaiting Process TerminationAwaiting Process Termination

pid_t wait(int *wstatus);

pid_t waitpid(pid_t pid, int *wstatus, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t *infop,
int options);

Giorgio Richelli
giorgio_richelli@it.ibm.com

Zombie ProcessesZombie Processes

✔ Upon termination, kernel holds proc structure
✔ wait() frees the proc

- called by parent or the init process.

✔ When:
- child dies before the parent
- parent doesn't wait for all childs,

the proc is never released.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Zombie ProcessesZombie Processes

Scenario:
✔ child exits -> [Defunct]
✔ parent doesn't wait() for child & ignores SIGCHLD →

zombie
✔ eventually parent exits → child is inherited by init → proc

freed

	Major Requirements of an Operating System
	The Process Abstraction
	Process
	PowerPoint Presentation
	Dispatcher
	Process Creation
	Process Termination
	Reasons for Process Termination
	Slide 9
	Process State Transition Diagram with Two Suspend States
	Slide 11
	When to Switch a Process
	UNIX Process State
	Process states and state transitions
	Process Context
	User Credentials
	Slide 17
	A typical process hierarchy in 4.3BSD UNIX
	Slide 19
	UNIX Services
	The Kernel interacts with processes and devices
	Mode,Space & Context
	Kernel data
	Context
	Executing in Kernel Mode
	Execution mode and Context
	The System Call Interface
	New Processes & Programs
	Using fork & exec
	Slide 30
	Slide 31
	Slide 32
	fork Optimization
	Invoking a New Program
	Awaiting Process Termination
	Zombie Processes
	Slide 37

