
1

Threads Programming

2

fork()

fork()
Process A

Global
Variables

Code

Stack

Process B

Global
Variables

Code

Stack

3

pthread_create()
Process A
Thread 1

Global
Variables

Code

Stack

Process A
Thread 2

Stack

pthread_create()

4

Thread-Specific Resources

Each thread has it’s own:
– Thread ID (thread_t)
– Stack, Registers, Program Counter
– errno (if not - errno would be useless!)

Threads within the same process can
communicate using shared memory.

Must be done carefully!

5

Posix Threads

You need to link with “-lpthread”

gcc -pthread

On many systems this also forces the compiler to
link in re-entrant libraries (instead of plain
vanilla C libraries).

6

Thread Creation

pthread_create(

pthread_t *tid,

const pthread_attr_t *attr,

void *(*func)(void *),

void *arg);

func is the function to be called.

When func() returns the thread is terminated.

7

pthread_create()

• The return value is 0 for OK.

• Thread ID is returned in tid
• Thread attributes can be set using attr,

– including detached state and scheduling
policy

– NULL gets the system defaults.

8

Thread IDs

Each thread has a unique ID, a thread can find out it's
ID by calling pthread_self().

Thread IDs are of type pthread_t which is usually
an unsigned int. When debugging, it's often useful
to do something like this:

printf("Thread %u:\n",pthread_self());

9

Thread Arguments

When func() is called the value arg
specified in the call to
pthread_create() is passed as a
parameter.

func can have only 1 parameter, and it can't be
larger than the size of a void *.

10

Thread Arguments (cont.)

Complex parameters can be passed by creating
a structure and passing the address of the
structure.

The structure can't be a local variable (of the
function calling pthread_create)!!

- threads have different stacks!

11

Thread Lifespan

Once a thread is created, it starts executing the
function func() specified in the call to
pthread_create().

If func() returns, the thread is terminated.

A thread can also terminate by calling
pthread_exit().

If main() returns or any thread calls exit()all
threads are terminated.

12

Detached State

Each thread can be either joinable or detached.

Detached: on termination all thread resources are
released by the OS. A detached thread cannot be
joined.

No way to get at the return value of the thread. (a
pointer to something: void *).

13

Joinable Thread

Joinable: on thread termination the thread ID and
exit status are saved by the OS.

One thread can "join" another by calling
pthread_join - which waits (blocks) until
a specified thread exits.

 int pthread_join(pthread_t tid,
 void **status);

14

Shared Global Variables

int counter=0;

void *pancake(void *arg) {

counter++;

printf("Thread %u is number %d\n",

pthread_self(),counter);

}

main() {

int i; pthread_t tid;

 for (i=0;i<10;i++)

 pthread_create(&tid,NULL,pancake,NULL);

}

15

DANGER! DANGER!
DANGER!

Sharing global variables is dangerous
● Two threads may attempt to modify the same

variable at the same time.

So:
● Avoid using globals, unless necessary.
● Allocate variable on stack (scalars) or use

malloc()/free()

16

pthreads includes support for Mutual Exclusion
primitives that can be used to protect against
this problem.

The general idea is to lock something before
accessing global variables and to unlock as
soon as you are done.

Shared socket descriptors should be treated as
global variables

Avoiding Problems

17

pthread_mutex

A global variable of type pthread_mutex_t is
required:

pthread_mutex_t counter_mtx=
PTHREAD_MUTEX_INITIALIZER;

Initialization to PTHREAD_MUTEX_INITIALIZER
is required for a static variable

18

Locking and Unlocking

• To lock use:
pthread_mutex_lock(pthread_mutex_t *);

• To unlock use:
pthread_mutex_unlock(pthread_mutex_t *);

• Both functions are blocking

19

Condition Variables

pthreads also support condition variables, which
allow one thread to wait (sleep) for an event
generated by any other thread.

This allows us to avoid the busy waiting
problem.

pthread_cond_t foo =
PTHREAD_COND_INITIALIZER;

20

Condition Variables (cont.)

A condition variable is always used with mutex.

pthread_cond_wait(pthread_cond_t *cptr,

 pthread_mutex_t *mptr);

pthread_cond_signal(pthread_cond_t
*cptr);

don’t let the word signal confuse you -
this has nothing to do with Unix signals

21

Condition Variables (cont.)

● Lock the mutex and then wait on condvar.
● Upon wakeup the lock is held

pthread_mutex_lock (&mutex);

pthread_cond_wait (&cond, &mutex);

…

pthread_mutex_unlock (&mutex);

22

Other Sync. Functions

Posix Semaphores

#include <semaphore.h>

sem_t s;

sem_init(sem_t *s, int shared, uint_t value);

sem_wait(sem_t *s);

sem_post(sem_t *s);

sem_getvalue(sem_t *s);

sema_destroy(sem_t *s);

23

Thread Safe library functions

• You have to be careful with libraries.

• If a function uses any static variables (or
global memory) it’s not safe to use with
threads!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

