

Sockets

Sockets

File I/O:
open, close, read, write, seek, fcntl, ...

Network communication:
developers extended set of file descriptors to include

network connections.
extended read/write to work on these new file

descriptors.
but other required functionality did not fit into the

‘openread-write-close’ paradigm.

 -> Socket API

Sockets

Server listens for requests from clients
Server: passive open
Client: active open
Example:

file server
web server
print server
mail server
name server
X window server

Sockets

Basics

The basic building block for communication is the
socket.

A socket is an endpoint of communication to
which a name may be bound.

Each socket in use has a type and one or more
associated processes.

Domains

Sockets exist within communication domains.
A communication domain is an abstraction

introduced to bundle common properties of
processes communicating through sockets, e.g.
socket name.

For example, in the UNIX communication domain
sockets are named with UNIX path names; e.g.
a socket may be named ‘‘/dev/foo’’.

Sockets normally exchange data only with
sockets in the same domain

Domains

The 4.4BSD IPC facilities supported four
separate communication domains
the UNIX domain, for on-system communication
the Internet domain, which is used by processes

which communicate using the Internet standard
communication protocols

the NS domain, which is used by processes which
communicate using the Xerox standard
communication protocols

the ISO OSI protocols

Socket Types

Sockets are typed according to the
communication properties visible to a user.

Processes are presumed to communicate only
between sockets of the same type

Four types of sockets currently are available

Stream Sockets

A stream socket provides for the bidirectional,
reliable, sequenced, and unduplicated flow of
data without record boundaries.

Aside from the bidirectionality of data flow, a pair
of connected stream sockets provides an
interface nearly identical to that of pipes

Datagram Sockets

A datagram socket supports bidirectional flow of
data which is not promised to be sequenced,
reliable, or unduplicated.

Messages may be dropped, duplicated, and,
possibly, delivered in an order different from the
order in which they were was sent.

An important characteristic of a datagram socket
is that record boundaries in data are preserved.

Raw Sockets

A raw socket provides users access to the
underlying communication protocols which
support socket abstractions.

These sockets are normally datagram oriented,
Not intended for the general user; they have been

provided mainly for those interested in
developing new communication protocols, or for
gaining access to some of the more esoteric
facilities of an existing protocol.

Sequenced Packet Sockets

A sequenced packet socket is similar to a stream
socket, with the exception that record
boundaries are preserved.

This interface is provided only as part of the NS
socket abstraction.

Socket Creation

s = socket(domain, type, protocol);
Create a socket in the specified domain and of

the specified type.
A particular protocol may also be requested.
If the protocol is left unspecified (a value of 0), the

system will select an appropriate protocol. from
those protocols which comprise the
communication domain and which

Socket Creation

s = socket(domain, type, protocol);
The user is returned a descriptor (a small integer

number) which may be used in later system
calls which operate on sockets.

Socket Creation

s = socket(domain, type, protocol);
The domain is specified as one of:

AF_UNIX (Unix Domain)
AF_INET (Internet Domain)
AF_NS (NS Domain)

 The socket types are:
SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET

Examples

s = socket(AF_INET, SOCK_STREAM, 0);
Creates a stream socket in the Internet domain

s = socket(AF_UNIX, SOCK_DGRAM, 0);
Creates a datagram socket for on-machine use

(Unix Domain)
The default protocol (last argument to the socket

call is 0) should be correct for almost every
situation

Socket Names

A socket is created without a name.
Until a name is bound to a socket, processes

have no way to reference it and, consequently,
no messages may be received on it.

Communicating processes are bound by an
association. In the Internet (and NS) domains,
an association is composed of local and foreign
addresses, and local and foreign ports.

In the UNIX domain, an association is composed
of local and foreign path names.

Socket Names

In the Internet domain there may never be
duplicate <protocol, local address, local port,
foreign address, foreign port> tuples.

UNIX domain sockets need not always be bound
to a name, but when bound there may never be
duplicate <protocol, local pathname, foreign
pathname> tuples.

Binding Names

bind(s, name, namelen);
The bind() system call allows a process to specify

half of an association, <local address, local
port> (or <local pathname>).

The connect() and accept() primitives are used to
complete a socket’s association.

The bound name is a variable length byte string
which is interpreted by the supporting
protocol(s).

Binding Names

In the Internet domain names contain an Internet
address and port number.

In the UNIX domain, names contain a path name
and a family, which is always AF_UNIX.

Example

#include <sys/un.h>

...

struct sockaddr_un addr;

...

strcpy(addr.sun_path, "/tmp/foo");

addr.sun_family = AF_UNIX;

len = strlen(addr.sun_path) +
sizeof (addr.sun_family)

bind(s, (struct sockaddr *) &addr, len);

Binding Names

File name referred to in addr.sun_path is created
as a socket in the system file space.

The caller must, therefore, have write permission
in the directory where addr.sun_path is to
reside, and this file should be deleted by the
caller when it is no longer needed.

Example

#include <sys/types.h>

#include <netinet/in.h>

...

struct sockaddr_in sin;

...

bind(s, (struct sockaddr *) &sin, sizeof (sin));

Connecting Sockets

Connection establishment is usually asymmetric,
with one process a ‘‘client’’ and the other
a‘‘server’’.

The server binds a socket to a well-known
address and then passively ‘‘listens’’

The client requests services from the server by
initiating a ‘‘connection’’ to the server’s socket.

On the client side the connect call is used to
initiate a connection.

Connecting Sockets

// Unix Domain

struct sockaddr_un server;

...

connect(s, (struct sockaddr *)&server,
strlen(server.sun_path) + sizeof
(server.sun_family));

--

// Internet Domain

struct sockaddr_in server;

...

connect(s, (struct sockaddr *)&server, sizeof
(server));

Connecting Sockets

server would contain either the UNIX
pathname, Internet address and port number of
the server to which the client process wishes to
speak.

If the client process’s socket is unbound at the
time of the connect call, the system will
automatically select and bind a name to the
socket if necessary

Connecting Sockets

An error is returned if the connection was
unsuccessful (any name automatically bound
by the system, however, remains).

Otherwise, the socket is associated with the
server and data transfer may begin.

Server Side

For the server to receive a client’s connection it
must perform two steps after binding its socket.

listen(s, 5);

Means that the server is willing to listen for
incoming connection requests

The second parameter specifies the maximum
number of outstanding connections which may
be queued awaiting acceptance

Server Side

A server may accept a connection:
struct sockaddr_in from;

...

fromlen = sizeof (from);

newsock = accept(s, (struct sockaddr *)&from,
&fromlen);

Server Side

A new descriptor is returned on receipt of a
connection (along with a new socket).

fromlen:
input; how much space is associated with from
output: size of the name

The second parameter may be a null pointer.

Sockets

Accept will not return until a connection is
available or the system call is interrupted by a
signal to the process.

Further, there is no way for a process to indicate
it will accept connections from only a specific
source

Data Transfer

Normal read and write system calls are usable:
write(s, buf, sizeof (buf));

read(s, buf, sizeof (buf));

But also:
send(s, buf, sizeof (buf), flags);

recv(s, buf, sizeof (buf), flags);

Data Transfer

send/recv flags:
MSG_OOB send/receive out of band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing

packets

When MSG_PEEK is specified with a recv call,
any data present is returned to the user, but
treated as still ‘‘unread’’.

Next read or recv call applied to the socket will
return the data previously previewed.

Closing

Once a socket is no longer of interest, it may be
discarded

shutdown(s, how);

close(s);

how:
SHUT_RD
SHUT_WR
SHUT_RDWR

Socket Calls Flow

Datagram Sockets

connect() on datagram sockets returns
immediately
The system simply records the peer’s address
On a stream socket a connect request initiates the

connection.

Only one connected address is permitted for
each socket at one time
a second connect will change the destination

accept() and listen() are not used with
datagram sockets.

Connectionless Sockets

Only with datagram sockets (!)

sendto() specifies a destination address
sts=sendto(s, buf, buflen, flags,
 (struct sockaddr *)&to, tolen);

to and tolen indicate the address of recipient

recvfrom() receives messages on an
unconnected datagram socket

sts=recvfrom(s, buf, buflen, flags,
(struct sockaddr *)&from, &fromlen)

netdb

Routines for
mapping host names to network addresses, network

names to network numbers
protocol names to protocol numbers
service names to port numbers and the appropriate

protocol

The file <netdb.h> must be included

Host Names

Internet host name to address mapping
struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type
 (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses,

null terminated */

};

#define h_addr h_addr_list[0] /* first address,
network byte order */

Host Names

gethostbyname(const char *name)
takes an host name and returns a hostent structure

gethostbyaddr(const char *addr,
int len, int type)

maps Internet host addresses (AF_INET, AF_INET6)
into a hostent structure

Network Names

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* network number,

 host byte order */

};

getnetbyname(const char *name);

getnetbynumber(long net,
int type);

Protocol Names

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

getprotobyname(const char *name)

getprotobynumber(int proto);

Service Names

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number,

 network byte order */
char *s_proto; /* protocol to use */

};

getservbyname(const char *name,
const char *proto);

getservbyport(int port, const char *proto);

sp = getservbyname("telnet", (char *) 0));

sp = getservbyname("telnet", "tcp");

Endiannes

Big Endian
the most significant byte of any multibyte data field

is stored at the lowest memory address

Little Endian
the least significant byte of any multibyte data field

is stored at the lowest memory address

Host Independent Formats

Intel CPUs are Little Endian, while the network
byte order is Big Endian

Macros to convert “host” order to “network byte
order

Network Byte Order

htonl(val)
convert 32-bit quantity from host to network byte

order

htons(val)
convert 16-bit quantity from host to network byte

order

Network Byte Order

ntohl(val)
convert 32-bit quantity from network to host byte

order

ntohs(val)
convert 16-bit quantity from network to host byte

order

Example

#include <stdio.h>

#include <netdb.h>

#include <stdlib.h>

unsigned long ResolveName(char name[])

{
struct hostent *host;
if ((host = gethostbyname(name)) == NULL){

fprintf(stderr, "gethostbyname() failed");
exit(1);

}
return *((unsigned long *)host->h_addr_list[0]);

}

Example

unsigned short ResolveService(char service[],
 char protocol[])

{
struct servent *serv;
unsigned short port;

if ((port = atoi(service)) == 0) {
if ((serv = getservbyname(service, protocol)) ==

NULL){
fprintf(stderr, "getservbyname() failed");
exit(1);

}
else port = serv->s_port;

}
else port = htons(port);
return port;

}

Multiplexing

select() allows multiplexing i/o requests
among multiple sockets and/or files

select

#include <sys/time.h>

#include <sys/types.h>

...

fd_set readmask, writemask, exceptmask;

struct timeval timeout;

...

select(nfds, &readmask, &writemask, &exceptmask,
&timeout);

select

select() takes pointers to three sets
one for the set of file descriptors for which the caller

wishesto be able to read data on
one for those descriptors to which data is to be

written
one for which exceptional conditions are pending

(out-of-band data is the only exceptional condition
currently implemented bythe socket

If the user is not interested in certain conditions
the corresponding argument should be NULL.

select

Each set is actually a structure containing an
array of long integer bit masks

The size of the array is set by the definition
FD_SETSIZE

The macros
FD_SET(fd, &mask)

FD_CLR(fd, &mask)

allow adding and removing file descriptor fd in the
set mask.

select

The set should be zeroed before use
FD_ZERO(&mask)

nfds specifies the range of file descriptors (i.e.
one plus the value of the largest descriptor) to
be examined

select

A timeout value may be specified

If timeout (struct timeval) is set to 0,
select returns immediately

If the last parameter is a NULL pointer, the
selection will block indefinitely
returns only when a descriptor is selectable or when

a signal

select

select()returns:
the number of file descriptors selected

0 if the select call returns due to the timeout expiring

-1 if terminated because of an error or interruption

select

The status of a file descriptor may be tested

FD_ISSET(fd, &mask)
returns a non-zero value if fd is a member of the set

mask, and 0 if it is not

Example

#include <sys/time.h>

#include <sys/types.h>

...

fd_set read_template;

struct timeval wait;

...

Example

for (;;) {

wait.tv_sec = 1; /* one second */

wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);

FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template,
(fd_set *) 0, (fd_set *) 0, &wait);

Example

if (nb <= 0) {

if (nb<0) perror(“select”)

else printf(“Timeout.\n);

continue;

}

if (FD_ISSET(s1, &read_template)) {

sts=ReadDataFromSocket(s1)

}

if (FD_ISSET(s2, &read_template)) {

sts=ReadDataFromSocket(s2)

}

}

select

select() provides a synchronous multiplexing
scheme.

Asynchronous notification of output completion,
input availability, and exceptional conditions is
possible through use of signals (SIGIO and
SIGURG)

Closing Sockets

s=connect(...);

if(fork()) { /* Child */

while(gets(buffer) >0) write(s,buf,strlen(buffer));

close(s);

exit(0);

}

else { /* Parent */

while((l=read(s,buffer,sizeof(buffer)) do_something(l,buffer);

wait(0);

exit(0);

}

Socket Shutdown

s=connect(...);

if(fork()) { /* Child */

while(gets(buffer) >0) write(s,buf,strlen(buffer));
– shutdown(s,SHUT_WR);
– close(s);
– exit(0);

}

else { /* Parent */

while((l=read(s,buffer,sizeof(buffer)) do_something(l,buffer);

wait(0);

exit(0);

}

setsockopt/getsockopt

int setsockopt(int s, int level, int optname,
const void *optval, int optlen);

int getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen)M

Manipulate the options associated with a
socket.

Options may exist at multiple protocol levels;
they are always present at the uppermost
socket level (SOL_SOCKET)

setsockopt/getsockopt

A server waits 2 MSL (maximum segment
lifetime) for old connection.

If not properly terminated, a further bind() will
return EADDRINUSE.

setsockopt/getsockopt

Before bind():
int opt=1;

setsockopt(s, SOL_SOCKET,SO_REUSEADDR,
 (char *)&opt, sizeof(opt));

Other options:
SO_ERROR get error status

SO_KEEPALIVE send periodic keep-alives

SO_LINGER close() on non-empty buffer

SO_SNDBUF send buffer size

SO_RCVBUF receive buffer size

Non Blocking I/O

Once a socket has been created it may be
marked as non-blocking

#include <fcntl.h>
...

int s;
...

s = socket(AF_INET, SOCK_STREAM, 0);
...

if (fcntl(s, F_SETFL, FNDELAY) < 0)
perror("fcntl F_SETFL, FNDELAY");

exit(1)

NonBlocking I/O

NB: must check for errno==EWOULDBLOCK
If an operation, such as a send, cannot be done

in its entirety the data that can be sent
immediately will be processed, and the return
value will indicate the amount actually sent

SIGIO

Allows a process to be notified via a signal when
a socket (or more generally, a file descriptor)
has data waiting to be read

Three steps:
set up a SIGIO signal handler
set the process id (or process group id) which is to

receive notification of pending input to itself
enable asynchronous notification of pending I/O

(another fcntl() call)

Example

#include <fcntl.h>
...

int io_handler();
...

signal(SIGIO, io_handler);

if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);

}

if (fcntl(s, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC");
exit(1);

}

Sockets & Signals

When a signal is sent to a process while
performing a sockets function, several things
may occur depending on whether the socket
function is defined as a slow function.

A slow function is a function that can block
indefinitely:
write(), recv(), send(), recvfrom(), recvmsg(),

sendmsg(), accept().
All other sockets functions are fast

Sockets & Signals

Fast functions are not interrupted by a signal
The signal is raised when these socket functions

exit.

Sockets & Signals

Slow functions are interrupted by a signal if they
are blocked waiting for IO (if they are
processing IO, they are not interrupted).
They are interrupted in the middle of processing by

the raising of a signal.
They stop what processing they are doing and return

the error EINTR.
They do not complete the IO that was initiated.
The user program must re-initiate any desired IO

explicitly.

Sockets & Signals

There are three signals that can be generated by
actions on a socket:
SIGPIPE
SIGURG
SIGIO

Sockets & Signals

A SIGPIPE is generated when a send()/write()
operation is attempted on a broken socket.
E.g. a socket which has been shutdown().

The default action is to terminate the process.
The target of the signal is the process attempting

the send()/write().

Sockets & Signals

SIGIO is somewhat more complex to set up :
fcntl(..,F_SETFL,FASYNC) to enable Async. I/O
fnctl(..,F_SETOWN, pid) to set target process (group)

id.

A SIGIO signal is generated whenever new I/O
can complete on a socket

Sockets & Signals

SIGIO signal is generated when
new data arrives at the socket
data can again be sent on the socket
the socket is either partially or completely shutdown

or when
a listen socket has a connection request posted on it
...

Sockets & Signals

A SIGURG indicates that an urgent condition is
present on a socket.

Either the arrival of out of band data or the
presence of control status information
fnctl(..,F_SETOWN, pid) to set target process (group)

id.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

