Major Requirements of an
Operating System

* Interleave the execution of the number of
processes to maximize processor utilization while
providing reasonable response time

* Allocate resources to processes

* Support interprocess communication and user
creation of processes

The Process (abstraction)

 Also called a rask

* Execution of an individual program
— an executable program
— associlated data
— execution context

* Can be traced
— list the sequence of instructions that execute

The Process

° In UNIX

— Process 1s an instance of a running program.
— Lifetime: fork/vfork->exec->exit
— Well-defined hierarchy: parent,child,init,

— System processes:
* init process: the top process

* swapper & pagedeamon

— Orphans

* the parent process 1s terminated.

Feo HET = [“/MesterIFY]
Firn Ry Tabh =il Seltngs Help

[gig~gio@zastone MasterININIE cat 2.2
i ucde cuys s Lvpe= s
Ficclude <uarstd. he
fi-clude <stdio. b=
%nt ma il
ikl opicd, ppedn, poidl o
printed My LL — Xdn® getpid 0
printf "My Parsat ID - %die 'Lastppici
oi= 83 | e I
3
[og fovmg lev@Roa~lore M= 1erTHFRIF oo i
[Qio-~giodsastone MasterlirlY s
e TIMC CvDh
E5EE plLeyse OC 000 bash
18230 pTss2 oD S0r00 b=
Log Toveg Do A= lorie M= erTHFMNIE <l
Mo = 1ELE
M« FParent -0 — 3582
[d1o-~gio@zastone MasterInFrld |

;ﬁhﬁﬂﬁﬂgfﬂwﬂﬁaﬁﬁﬂﬂeﬂ&1hFH|

Dispatcher

* The program that moves the processor from one process
to another

* Prevents a single process from monopolizing processor
time
* [t cannot just select the process that has been in the
queue the longest because 1t may be blocked
— Not-running
* ready to execute

- Blocked
* waiting for I/O

Process Creation

* Submission of a batch job

e User logs on

* Create to provide a service such as printing
* Spawned by an exsting process

Process Termination

* When:

— batch job 1ssues Halt instruction
— User logs off
— Process executes a service request to terminate

— On error and fault conditions

Reasons for Process Termination

* Normal completion
* Time limit exceeded
* Memory unavailable
* Bounds violation

* Protection error

— example write to read-only file
* Arithmetic error
* Time overrun

— process waited longer than a specified maximum for an
event

Reasons for Process Termination

* |/O failure

* Invalid instruction
— happens when try to execute data

* Privileged instruction
* Data misuse

* Operating system intervention
— such as when deadlock occurs

* Parent terminates so child processes terminate
* Parent request

Process State Transition Diagram with Two
Suspend States

e
Admit Admit gyspend
Ak Activate . Dispatch —
ot (Ready iiMii?
Suspend Timeout,
Event Event
Ovours Oceurs | Wait
Activate

Process Creation

* Assign a unique process identifier
* Allocate space for the process

* Initialize process control block

* Set up appropriate linkages

- Ex: add new process to linked list used for scheduling
queue

e Other

— maintain an accounting file

When to Switch a Process

* Interrupts
- Clock

* process has executed for the maximum allowable time slice

- /O

* Memory fault
— memory address is in virtual memory so it must be
brought into main memory
* Trap
— error occurred
— may cause process to be moved to Exit state

* Supervisor call
— such as file open

UNIX Process State

e Initial (1dle)

* Ready to run

* Kernel/User running

e Zombie

* Asleep

* + (4BSD): stopped/suspend

Process states and state transitions

Key

im 4.2 3B ELy, Dot
m SVRZ/BWR 3

-Fign rue 2-3.__1"1_‘::::_::5:35 statcs and slalc ﬁm:ﬂtmm,

Process Context

* User address space:
— code, data, stack, shared memory regions
* Control mmformation:
— u area, proc, kernel stack, Addr.Trans. Map

e (Credentials: UID & GID

* Environment variables:
— 1nherited from the parent

* Hardware context(in PCB of u area):
- PC, SP, PSW, MMR, FPU

User Credentials

* Superuser: UID=0, GID=1
e Real IDs: login, send signals
e Effective IDs: file creation and access

® ¢Xec.

- suid/sgid mode: set to that of the owner of the file
* setuid / setgid:

SV & BSD are different with these

- saved UID, saved GID 1n SV
— setgroups() in BSD

Who's who

int getuid();
— returns user 1d
int getgid()
— returns group 1d
int geteuid();
— return effective user 1d
int getegid();

— returns effective group 1d

A typical process hierarchy in
4.3BSD UNIX .

*p_ p1d Q,;f?,_
p_ppid = 384 |

" Process ID

... Ptrtoparentsproc ~tp_pptr - B
- | P-SPtr — 5145 the youngest child
S S pﬁysptr_ L L S
Ptr to the younger sibling .p_osptr

p_ pp1d

(B pid 58‘\ :
p_pp1d 50
p_pptr = — o pzppers

p_cptr = ';1fiffff p cptr
P ysptr.faf;ffﬁ%iﬁ> P_ysptr ——p)
P osptr O?”'Mf — p_osptr ;; , _ , P osptr ':w;;,f

- Figure 2-4. A typical process hierarchy in 4.3BSDUNIX.

[
o)

The UNIX kernel

* A special program that runs directly on the hardware.
* Implements the process model and services.

* Resides on disk
— /vmunix, /unix, /vmlinuz, ...

* Bootstrapping: loads the kernel.

* Initializes the system and sets up the environment,
remains in memory before shut down

UNIX Services

* System Calls
* Hardware exceptions
— Divide by 0, overflowing user stack

* Interrupts
— Devices

* Swapper, pagedaemon

The Kernel interacts with processes
‘and dev1ces

User processes . System processes

': _-.l.nterface

interface

Figure 2-1. The kernel interacts with processes and devices.

Mode,Space & Context

* Some critical resources must be protected
— Kernel Mode: More privileged, kernel functions
— User Mode: Less privileged, user functions

* Virtual Memory
- VM space
— Address Translation Maps
— Memory Management Unit

Kernel data

* Current process & context switch
* One 1nstance of the kernel

* (Global data structure

* Per-process objects

* System call, mode switch

e User area: info. about a process

e Kernel stack

Context

e Re-entrant: several processes may be involved 1n
kernel activities concurrently.
* Execution context
— Process
— System (Interrupt)

Execution mode and Context

- process
context

/ application ' system calls, \

fusery code | excepiions

TSEP (access'pracess space valy) -) (acecss process-and system space}| kermel -
mode | | {accest systern space orily) - | meode

not:aflowed | interrupts,
_ system tasks / .

‘mystem
context

Figire 2-2. Execution mode and context.” . -

Executing in Kernel Mode

* 3 types of events:
— Device interrupts
— Exceptions
— Traps or software interrupts

* Dispatch table
* System context: interrupts

* Process context: traps, exceptions & software
interrupts

The System Call Interface

e syscal l () : the starting point
— In kernel mode, but 1n process context.

— Copy arguments , save hardware context on the
kernel stack.

— Use system call number to index dispatch vector

— Return results 1n registers, restore hardware context,
to user mode, control back to the library routine.

New Processes & Programs

eint fork():
— creates a new process.
- returns 0 to the child, PID to the parent

el Nt exec*(..):

— begins to execute a new program

Using fork & exec

1 f ((ChildPid = fork())==0){
[* child code*/

i f (execve(“new prograni), .)<0) {
e perror(“execve failed.”);
eexit(-1)
}
} else if (ChildPid <0) {
e perror(“fork failed”);
eexit(-1)
}

/| *parent conti nues here*/

| B MOl = ["ofasss~lhFH
¢ Tile Mew Tas Coil Sefings | elp

[ginrg n@gastrone Mes—=eTNFR]E fat prf o
#includs «ZvssTveEos . h?

Fncluds <on-==d, h:

Eirs Tl <= Lilija be

it mas s

-

8

ks pEsEyn apiAsy prdly

aid==nrk{)
(L 6 el o2 L 2

priatfc Chl1ld FPracezs - My PID:%d, FarerT =720 cetpidll, gsatpaldd)0
3

al|lsas b

prifntfs’ -arcnt 'Foctss My 'Lbrsd, ParcrT - CoTETdL Yy, 9otpaidi g
E
et 9

[Qiorg odgastone MosTarlNINIY £S
=20 TTY TZME MDD

BARE ptsJSE T BT e -

"L ptss2 oo 00 50 o5

[Qiorg - sdgastone MasT2rlMEMN]YE o B C

[Ai1org cAdasTohne MEsT2rIMFNIE a oL

Fz:reqt FiraZess— Ww 22012364, “arent PID:ELE2
Zhi 4 Procsss — W« 2_0180305, =arspt PIDT13E3Cd
[giorg ocdgactone Meo-arld-NIE B

| Bt =i e O e MR oy | 0

Process Creation

° Almost an exact clone of the parent.

Reserve swap space for the child
— Allocate a new PID and proc structure for the child
— Initialize proc structure

— Allocate ATM (address translation map)

— Allocate u area and copy

— Update the u area to refer to the new ATM & Swap space

— Add the child to the set of processes sharing the text region of the program

— Duplicate the parent’s data and stack regions update ATM to refer to these new
pages.

— Acquire references to shared resources inherited by the child

— Initialize the hardware context

— Make the child runnable and put it on a scheduler queue

— Arrange to return with O

— Return the PID to the parent

Fork Optimization

* [t 1s wasteful to make an actual copy of the
address space of the parent

- Copy-on-write:
* only the pages that are modified must be copied.(SYSV)

— viork() (BSD):

* The parent loans the address space and blocks until the
child returns to it.

— dangerous

* (csh exploits it)

Invoking a New Program

* Process address space
- Text: code
— Initialized data
— Uninitialized data(bss)
— Shared memory(SYSV)
— Shared libraries
— Heap: dynamic space
— User stack: space allocated by the kernel

Awaiting Process Termination

wal t (statusp);/* SV, BSD & POSI X*/

wal t 3(st at usp, opti ons, rusagep); / *BSD*/
wai t pi d(pi d, statusp, options);/*POSI X*/
wal tid(idtype,id,infop, options);/*SVR4*/

Zombie Processes

* Only holds proc structure.

e wal t () frees the proc
— parent or the 1nit process.

* When child dies before the parent & parent
doesn't wait for all childs, then the proc 1s never
released.

