
Giorgio Richelli
giorgio_richelli@it.ibm.com

Inter Process Communication (IPC)Inter Process Communication (IPC)

Giorgio Richelli
giorgio_richelli@it.ibm.com

ContentsContents

Introduction
Universal IPC Facilities
System V IPC

Giorgio Richelli
giorgio_richelli@it.ibm.com

IntroductionIntroduction

The purposes of IPC:

Data transfer
Sharing data
Event notification
Resource sharing
Process control

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal Generation & HandlingSignal Generation & Handling

Signal:

A way to call a procedure when some events occur.
Generation:

when the event occurs.
Delivery:

when the process recognizes the signal’s arrival (handling)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal Generation & HandlingSignal Generation & Handling

Pending: between generated and delivered.
System V: 15 signals
4BSD/SVR4 : 31 signals
Signal numbers: different in different system or versions

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

Default actions: each signal has one.
Abort: Terminate the process after generating a core dump.
Exit: Terminate the process without generating a core dump.
Ignore: Ignores the signal.
Stop: Suspend the process.
Continue: Resume the process, if suspended

Default actions may be overridden by signal handlers

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

issig() (Kernel call) : check for signals
Before returning to user mode from a system call or interrupt.
Just before blocking on an interruptible event
Immediately after waking up from an interruptible event

 psig(): dispatch the signal
 sendsig(): invoke the user-defined handler

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

Execute normal code

Signal
delivered

Resume normal code

Signal handler runs

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal GenerationSignal Generation

Signal sources:
✔ Exceptions
✔ Other processes
✔ Terminal interrupts
✔ Job control
✔ Quotas
✔ Notifications
✔ Alarms

Giorgio Richelli
giorgio_richelli@it.ibm.com

Typical ScenariosTypical Scenarios

^C (Ctrl-c)
Exceptions:

Trap
 issig(): when return to user mode.

Pending signals

processed one by one.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Sleep and signalsSleep and signals

Interruptible sleep:

waiting for an event with indefinite time.
Uninterruptible sleep:

is waiting for a short term event such as disk I/O
Pending the signal
Recognizing it until returning to user mode or blocking on an event

 if (issig()) psig();

Giorgio Richelli
giorgio_richelli@it.ibm.com

Unreliable SignalsUnreliable Signals

✔ Signal handlers are not persistent and do not mask recurring
instances of the same signal (SVR2)

✔ Race conditions: two ^C.
✔ Performance: SIG_DFL, SIG_IGN:

- Kernel does not know the content of u_signal[];
- Awake, check, and perhaps go back to sleep again

(waste of time).

Giorgio Richelli
giorgio_richelli@it.ibm.com

Reinstalling a signal handlerReinstalling a signal handler

void sigint_handler(int sig)

{

signal(SIGINT, sigint_handler);

 …

}

main()

{

signal(SIGINT, sigint_handler);

…

}

Giorgio Richelli
giorgio_richelli@it.ibm.com

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>

int cnt=0;
void handler(int sig)
{
 cnt++;
 printf("In the handler...\n");
 signal(SIGINT,handler);
}
main()
{
 signal(SIGINT,handler);
 while (1) {

printf("In main\n");
sleep(1);

 }
}

Unreliable SignalsUnreliable Signals

Giorgio Richelli
giorgio_richelli@it.ibm.com

Reliable SignalsReliable Signals

Primary features:
✔ Persistent handlers: need not to be reinstalled.
✔ Masking: A signal can be temporarily masked (will be delivered

later)
✔ Sleeping processes: let the signal disposition info visible to the

kernel (kept in the proc)
✔ Unblock and wait: sigpause()-automatically unmasks a signal and

blocks the process.

Giorgio Richelli
giorgio_richelli@it.ibm.com

The SVR3 implementationThe SVR3 implementation

int sig_received = 0;

void handler (int sig)

{

sig_received++;

}

main()

{

sigset (SIGQUIT, handler);

/* sighold(SIGQUIT); */

while (sig_received ==0) sigpause(SIGINT);

....

}

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signals in SVR4Signals in SVR4

✔ sigprocmask(how, setp, osetp)
- SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

✔ sigaltstack(stack, old_stack):
- Specify a new stack to handle the signal

✔ sigsuspend(sigmask)
- Set the blocked signals mask to sigmask and puts the

process to sleep
✔ sigpending(setp)

- setp contains the set of signals pending to the
process

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signals in SVR4Signals in SVR4

✔ sigsendset(procset, sig)
- Sends the signal sig to the set of processes procset

✔ sigaction(signo, act, oact)
- Specify a handler for signal signo.
- act, oact pointers to sigaction structure
- oact is the previous sigaction data

✔ Compatibility interface:
- signal, sigset, sighold, sigrelse,

sigignore, sigpause

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal fagsSignal fags

✔ SA_NOCLDSTOP: Do not generate SIGCHLD
when a child is suspended

✔ SA_RESTART: Restart system call automatically if
interrupted by this signal

✔ SA_ONSTACK: Handle this signal on the alternate
stack, if one has been specified by sigaltstack

✔ SA_NOCLDWAIT: sleep until all terminate
✔ SA_SIGINFO: additional info to the handler.
✔ SA_NODEFER: do not block this signal
✔ SA_RESETHAND: reset the action to default

Giorgio Richelli
giorgio_richelli@it.ibm.com

Universal IPC FacilitiesUniversal IPC Facilities

Signals
Kill
Sigpause
^C

Expensive
Limited: only 31 signals.
Signals are not enough.

Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

A unidirectional, FIFO, unstructured data stream of fixed maximum
size.

 int pipe (int * filedes)

Data

PP

P

P

P Data flow through a pipe.

Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

✔ Write to filedes[1]
✔ Read from filedes[0]
✔ Write to a pipe could block for large I/O sizes

Giorgio Richelli
giorgio_richelli@it.ibm.com

Named PipesNamed Pipes

Aka 'FIFO's
Identified by their access point (filename)

int mkfifo(char *path, mode_t mode);
Can be opened/read/written as normal files

Giorgio Richelli
giorgio_richelli@it.ibm.com

Named PipesNamed Pipes

A named pipe cannot be opened for both reading and writing.
Read and write operations to a named pipe are blocking,by default.
Seek operations (lseek) cannot be performed on named pipes

Giorgio Richelli
giorgio_richelli@it.ibm.com

System V IPCSystem V IPC

Common Elements

Key: resource ID
Creator: Ids
Owner: Ids
Permissions: r/w/x for owner/group/others

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoresSemaphores

Special variable called a semaphore is used for “signaling”
If a process is waiting for a “signal”, it is suspended until that “signal”

is sent
“Wait” and “signal” operations cannot be interrupted (e.g. they are

atomic)
Queue is used to hold processes waiting on the semaphore

Giorgio Richelli
giorgio_richelli@it.ibm.com

P/V OperationsP/V Operations

P(wait):

s=s-1;
if (s<0) block();

V(signal):

s= s+1;
If (s>=0) wake();

Giorgio Richelli
giorgio_richelli@it.ibm.com

Producer/Consumer ProblemProducer/Consumer Problem
One or more producers are generating data and placing these in a

buffer

A single consumer is taking items out of the buffer one at
time

Only one producer or consumer may access the buffer at
any one time

Three semaphores are used:
Amount of items in the buffer
Number of free entries in the buffer
Right to use the buffer

Giorgio Richelli
giorgio_richelli@it.ibm.com

Producer Function - PseudocodeProducer Function - Pseudocode
#define SIZE 100

semaphore s=1

semaphore n=0

semaphore e= SIZE

void producer(void)

{

 while (TRUE){

 produce_item();

 wait(e);

 wait(s);

 enter_item();

 signal(s);

 signal(n);

 }

}

Giorgio Richelli
giorgio_richelli@it.ibm.com

Consumer FunctionConsumer Function

void consumer(void)
{
 while (TRUE){
 wait(n);
 wait(s);
 remove_item();
 signal(s);
 signal(e);
 }
}

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

int semget(key_t key, int count, int flag);
Returns the id. of semaphore set (count elements)

associated with key.
key :

IPC_PRIVATE
flag :

IPC_CREAT, ...
Access permissions

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

int semop(int semid, struct sembuf *sops, unsigned nsops);

performs operations on selected members of the
semaphore set indicated by semid. Each of the nsops
elements in the array pointed to by sops specifies an
operation to be performed on a semaphore by a

Operations are performed atomically and only if they can
all be simultaneously performed

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

struct sembuf {
 unsigned short sem_num;
 short sem_op;
 short sem_flg;
}

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

unsigned short sem_num

semaphore number (in set semid)
short sem_flg

IPC_NOWAIT
Don't block, but returns -1 and set errno to EAGAIN

IPC_UNDO
undo operation(s) when process exits

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

short sem_op

when >0
Add sem_op to the value; eventually wake up suspended

processes

when == 0
Block until value == 0 (unless IPC_NOWAIT)

when <0
Block (unless IPC_NOWAIT) until the value becomes greater than

or equal to the absolute value of sem_op, then subtract sem_op
from that value

Giorgio Richelli
giorgio_richelli@it.ibm.com

SemaphoreSemaphore

int semctl(int semid, int snum, int cmd, ...);

Performs the control operation specified by cmd on the
semaphore set identified by semid, or on the snum-th
semaphore

IPC_SETVAL/IPC_GETVAL
Set, Get value of semaphore

IPC_RMID
Remove semaphore set

....

Giorgio Richelli
giorgio_richelli@it.ibm.com

DeadLock DeadLock

S2

Proc BS1

Proc A

lock

lock

Giorgio Richelli
giorgio_richelli@it.ibm.com

IPC with shared memoryIPC with shared memory

P1 P2

kernel

Shared memory

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared MemoryShared Memory

A portion of physical memory that is share by multiple processes.

Process A Process B

0x30000

0x50000 0x50000

0x70000Shared memory

region

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared Memory APIShared Memory API

int shmget(key_t key, size_t size , int flag);

returns the identifier of the shared memory segment
associated with key

key
IPC_PRIVATE, ...

size
size of shared area

flag
IPC_CREATE, permissions, ..

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared MemoryShared Memory

Segments are:

inherited after fork()
detached, not destroyed, after exec() or exit()

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared Memory APIShared Memory API

void *shmat(int shmid, void * shmaddr, int shmflag);

attaches the shared memory segment identified by shmid
to the address space of the calling process

shmaddr
Usually NULL, otherwise address requested for segment

shmflag
SHM_RDONLY, SHM_RND, ...

Does not modify the brk

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared Memory APIShared Memory API

int shmdt(void *shmaddr);

Detaches the shared memory segment at shmaddr from
address space of calling process.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared Memory APIShared Memory API

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

performs operation indicated by cmd on shared memory
segment identified by shmid

cmd
IPC_RMID, ...

buf
address of struct to hold information about segment

Giorgio Richelli
giorgio_richelli@it.ibm.com

Shared Memory APIShared Memory API

Shared memory segments must be explicitly removed (IPC_RMID)
The segment is marked as removed, but it will be destroyed when the

last process call shmdt()

Giorgio Richelli
giorgio_richelli@it.ibm.com

FtokFtok

IPC key can be correlated to a file name
key_t ftok(char *pathname, int ndx)

builds a key based on pathname and ndx

Giorgio Richelli
giorgio_richelli@it.ibm.com

SecuritySecurity

If a process holds the key, it might access the resource.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueuesMessage Queues

Processes can send and receive messages in an arbitrary order.
Unlike pipes, each message has an explicit length.
Messages can be assigned a specific type.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueuesMessage Queues

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

int = msgget(key_t key, int flag);

returns the message queue identifier associated with the
value of the key argument.

key: IPC_PRIVATE, ..
flag: IPC_CREAT, ...

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

int msgsnd(int msgqid, struct msgbufp *msgp, size_t size, int flag)

appends a copy of the message pointed to by msgp to the
message queue whose identifier is specified by msqid

flag: IPC_NOWAIT, ..

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

count =msgrcv(int msgqid, struct msgbuf *msgp, size_t size, long type,
int flag)

reads a message from the message queue specified by
msqid into the buffer pointed to msgp

size: maximum size (in bytes) for the mtext member of msgp
type: 0, [type], - [type]
flag:

IPC_NOWAIT, MSG_NOERROR, MSG_EXCEPT

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

 struct msgbuf {
 long mtype; /* message type */
 char mtext[MSGSZ]; /* message text of length MSGSZ */
}

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

performs the control operation specified by cmd on the
message queue with identifier msqid

cmd
IPC_RMID,

Giorgio Richelli
giorgio_richelli@it.ibm.com

An example of a msqAn example of a msq

msqid
msg_perm;
msg_first;
msg_last;
msg_cbytes;
msg_qbytes;
msg_qnum;

Link
Type=100
Length=1
data

Link
Type=200
Length=2

Data

NULL
Type=300
Length=3

Data

msqid_ds

Giorgio Richelli
giorgio_richelli@it.ibm.com

Message QueueMessage Queue

struct
msgqid_ds

msg msgmsg

P

senders

P

receivers

PP

Giorgio Richelli
giorgio_richelli@it.ibm.com

SocketsSockets

A socket is an endpoint of communication.
An in-use socket it usually bound with an address; the nature of the

address depends on the communication domain of the socket.

e.g. 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

Giorgio Richelli
giorgio_richelli@it.ibm.com

SocketsSockets

Giorgio Richelli
giorgio_richelli@it.ibm.com

SocketsSockets

Communication consists between a pair of sockets.
A characteristic property of a domain is that processes

communication in the same domain use the same address format.

protocol domain
address domain

Giorgio Richelli
giorgio_richelli@it.ibm.com

SocketsSockets

A single socket can communicate in only one domain
Commonly implemented domains:

UNIX (PF_LOCAL)
Internet (PF_INET)
.... (lots)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket TypesSocket Types

Stream

Reliable, duplex, sequenced data streams.
Supported in Internet domain by the TCP protocol.
In UNIX domain, pipes are implemented as a pair of

communicating stream sockets.
Sequenced packet

Provide similar data streams, except that record
boundaries are provided.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket TypesSocket Types

Datagram:

Transfer messages of variable size in either direction.
Supported in Internet domain by UDP protocol

Reliably delivered message:

Transfer messages that are guaranteed to arrive.
Almost unsupported.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Raw:

allow direct access by processes to the protocols that
support the other socket types.
E.g., in the Internet domain, it is possible to reach TCP, IP beneath

that, or a deeper Ethernet protocol.

Useful for developing new protocols.

Socket TypesSocket Types

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

The socket() call creates a socket
A name/address is bound to a socket by bind()
The connect() system call is used to initiate a connection

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System Calls (Cont.)Socket System Calls (Cont.)

close()

terminates a connection and destroys the associated
socket

select()

multiplex data transfers on several file descriptors and /or
socket descriptors

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

A server process usually calls:

socket() to create a socket
bind() to bind an address
listen() to indicate willingness to accept connections from

clients
accept() to accept an individual connection

eventually, fork() a new process after the accept()

send() & recv() to move data
close() when all is done on the connection

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

A client process usually calls:

socket() to create a socket
connect() to estabilish a connection with server
send(), recv() to move data
close() to close the connection

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket Calls FlowSocket Calls Flow

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

 int socket(int domain, int type, int protocol);

creates an endpoint for communication and returns a
descriptor

domain: PF_UNIX, PF_INET, ...
type: SOCK_STREAM, SOCK_DGRAM, ...
protocol: 0, IPPROTO_TCP, IPPROTO_UDP, ...

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

 gives the socket sockfd the local address my_addr
(addrlen bytes long)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

int listen(int s, int backlog);

specify willingness to accept incoming connections and a
queue limit (for pending connections)

s: socket
backlog: maximum length for the queue

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

extracts the first connection request on the queue of
pending connections on s, creates a new connected
socket with (mostly) the same properties

s: socket
addr: will contain the “from” address
addrlen: bytes available in addr

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

ssize_t send(int s, const void *buf, size_t len, int flags);

transmit a message to another socket
s must be “connected”
almost identical to write(), execpt for flags
flags: MSG_DONTWAIT, MSG_DONTROUTE,

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

ssize_t recv(int s, void *buf, size_t len, int flags);

receive messages from a (connected) socket
almost identical to a read(), except for flags
flags:

MSG_PEEK, MSG_TRUNC, MSG_WAITALL, ...

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t
addrlen);

attempts to connect sockfd to another socket, specified by
serv_addr, which is an address (of length addrlen) in the
communications space of the socket.

returns: 0 / -1

Giorgio Richelli
giorgio_richelli@it.ibm.com

Socket System CallsSocket System Calls

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

wait on a number of file descriptors (until, eventually, a
timeout occurs)

 Three sets of descriptors are watched.
readfds see if characters become available for reading writefds will

be watched to see if a write will not block exceptfds will be
watched for exceptions

Macros to manipulate the sets:
FD_ZERO, FD_SET, FD_CLR, FD_ISSET

Giorgio Richelli
giorgio_richelli@it.ibm.com

Getting Host Name & Address(es)Getting Host Name & Address(es)

struct hostent *gethostbyname(const char *name);

returns a structure of type hostent for the given host name
(either an host name, or an IP address)
struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0] /* backw. compatibility */

Giorgio Richelli
giorgio_richelli@it.ibm.com

Getting Host Name & Address(es)Getting Host Name & Address(es)

struct hostent *gethostbyaddr(const char *addr, int len, int type);

returns a structure of type hostent for the given host address
addr of length len and address type type.

type: AF_INET, AF_INET6

Giorgio Richelli
giorgio_richelli@it.ibm.com

EndiannesEndiannes

Big Endian

the most significant byte of any multibyte data field is stored
at the lowest memory address

Little Endian

the least significant byte of any multibyte data field is stored
at the lowest memory address

Giorgio Richelli
giorgio_richelli@it.ibm.com

Host Independent FormatsHost Independent Formats

Intel CPUs are Little Endian, while the network byte order is Big
Endian

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);

from host byte order to network byte order

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

from network byte order to host byte order

	Slide 1
	Contents
	Introduction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	6.2Universal IPC Facilities
	Pipes
	Slide 22
	Slide 23
	Slide 24
	6.3 System V IPC
	Semaphores
	P/V Operations
	Producer/Consumer Problem
	Producer Function
	Consumer Function
	Semaphore
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Dead lock of semaphore
	Client/server with shared memory
	Shared memory
	Using the shared memory
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Discussion
	Slide 47
	Slide 48
	Slide 49
	Message Queue
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	An example of a msq
	Using a message queue
	Slide 57
	Sockets
	Slide 59
	Slide 60
	Socket Types
	Slide 62
	Slide 63
	Socket System Calls
	Socket System Calls (Cont.)
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

