
Giorgio Richelli
giorgio.richelli@uniroma1.it

SocketsSockets

✔ A socket is an endpoint of communication.
✔ An in-use socket it usually bound with an address
✔ The nature of the address depends on the communication domain 

of the socket.
- Unix, Internet, XEROX (historical)
- e.g. 161.25.19.8:1625 is an address in the Internet domain 

referring to:
 Host IPv4: 161.25.19.8
 Port: 1625



Giorgio Richelli
giorgio.richelli@uniroma1.it

SocketsSockets



Giorgio Richelli
giorgio.richelli@uniroma1.it

SocketsSockets

✔ Communication can be estabilished between pairs of sockets.
✔ Each active socket has:

- Address
- Protocol

✔ Processes communication in the same domain use the same 
address format



Giorgio Richelli
giorgio.richelli@uniroma1.it

SocketsSockets

✔ A single socket can communicate in only one domain
✔ Commonly implemented domains:

- UNIX  (AF_LOCAL, PF_LOCAL)
- Internet  (AF_INET, PF_INET)

✔ Note:
- Originally it was thought that an address family might support 

several protocols.
- So the most correct thing would be:

 AF_INET in  struct sockaddr_in
 PF_INET in calls to socket(). 

- But in practice, you can always use AF_INET. 



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket TypesSocket Types

✔ Stream 
- Reliable, duplex, sequenced data streams.
- Supported in Internet domain by the TCP protocol.  
- In UNIX domain, pipes are implemented as a pair of 

communicating stream sockets.

✔ Sequenced packet
- Provide similar data streams, except that record boundaries are 

provided.  



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket TypesSocket Types

✔ Datagram:
- Transfer messages of variable size in either direction.  
- Supported in Internet domain by UDP protocol

✔ Reliably delivered message:
- Connectionless, message-oriented, preserving message 

boundaries
- Guaranteed to arrive  
- Almost  unsupported



Giorgio Richelli
giorgio.richelli@uniroma1.it

✔ Raw:
- Allow direct access by processes to the protocols that support the 

other socket types. 
- In the Internet domain, it is possible to reach:

TCP
 IP 
 Ethernet
  

✔ Useful for developing new protocols or for sniffers.

Socket TypesSocket Types



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

✔ socket()
- creates a socket 

✔ bind()
- Assigns name and address to a socket

✔ server: listen()/accept() 
✔ client: connect() 

- Initiate the connection



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System Calls (Cont.)Socket System Calls (Cont.)

✔ close()
- terminates a connection and destroys the associated socket

✔ select() 
- multiplexes data transfers on several file descriptors (and /or 

socket descriptors).



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

A server process usually calls:
✔ socket()

- to create a socket
✔ bind() 

- to bind an address 
✔ listen() 

- to indicate willingness to accept connections from clients



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls
A server process then calls (cont):
✔ accept() 

- to accept an individual connection
- eventually, fork() a new process after the accept()

✔ send() & recv()
-  to move data

✔ close() 
- when all is done on the connection



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

A client process usually calls:
✔ socket()

- to create a socket
✔ connect() 

- to estabilish a connection with server
✔ send(), recv() 

- to move data
✔ close() 

- to close the connection



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket Calls FlowSocket Calls Flow



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int socket(int domain, int type, int protocol);
✔ creates an endpoint for communication and returns a descriptor
✔ domain: PF_UNIX, PF_INET, ...
✔ type: SOCK_STREAM, SOCK_DGRAM, ...
✔ protocol: 0, IPPROTO_TCP, IPPROTO_UDP, ...



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int bind(int sockfd, struct sockaddr *my_addr, 
socklen_t addrlen);
✔ gives  the  socket  sockfd  the local address my_addr (addrlen 

bytes long)



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int listen(int s, int backlog);
✔ specify willingness to accept incoming connections and a queue 

limit (for pending connections)
✔ s: socket
✔ backlog: maximum length for the queue  



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int accept(int s, struct sockaddr *addr, socklen_t 
*addrlen);
✔ extracts the first connection request  on  the queue  of  pending  

connections on s and creates a new connected socket with 
(mostly) the same properties

✔ s: socket
✔ addr:  will contain the from address
✔ addrlen: bytes available in addr



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

ssize_t send(int s, const void *buf, size_t len, int 
flags);
✔ transmits a message to another socket
✔ s must be connected
✔ almost identical to write(), except for flags
✔ flags: MSG_DONTWAIT, MSG_DONTROUTE, ....



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

ssize_t recv(int s, void *buf, size_t len, int flags);
✔ receives messages from a (connected) socket 
✔ almost identical to a read(), except for flags
✔ flags: MSG_PEEK, MSG_TRUNC, MSG_WAITALL, ...



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int connect(int sockfd, const struct sockaddr 
*serv_addr, socklen_t addrlen);
✔ attempts  to  connect sockfd to another socket, specified by 
serv_addr, which is an address (of length addrlen) in the 
communications  space  of  the  socket.

✔ returns:  0 / -1



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int select(int n, fd_set *readfds, fd_set *writefds, 
fd_set  *exceptfds,  struct timeval *timeout);
✔ waits on a number of file descriptors (until, eventually, a timeout 

occurs)
✔ three sets of descriptors are watched:

- readfds see if characters become available for reading
- writefds will be watched to  see  if  a  write  will  not block
- exceptfds will be watched for exceptions

✔ macros to manipulate the sets:
- FD_ZERO, FD_SET, FD_CLR, FD_ISSET



Giorgio Richelli
giorgio.richelli@uniroma1.it

Getting Host Name & Address(es)Getting Host Name & Address(es)

struct hostent *gethostbyname(const char *name);
✔ returns a structure of type hostent for the given host  name 

(either an host name, or an IP address) 
struct hostent {

  char    *h_name;        /* official name of host */

  char    **h_aliases;    /* alias list */

  int     h_addrtype;      /* host address type */

  int     h_length;          /* length of address */

  char    **h_addr_list; /* list of addresses */

}

#define h_addr  h_addr_list[0]  /* backw. compatibility */



Giorgio Richelli
giorgio.richelli@uniroma1.it

Getting Host Name & Address(es)Getting Host Name & Address(es)

struct hostent *gethostbyaddr(const char *addr, int 
len, int type);
✔ returns a structure of type hostent for the given host address 

addr of length len and address type type.
✔ type:  AF_INET, AF_INET6



Giorgio Richelli
giorgio.richelli@uniroma1.it

EndiannesEndiannes

✔ Big Endian 
- the most significant byte of any multibyte data field is stored at 

the lowest memory address
✔ Little Endian

- the least significant byte of any multibyte data field is stored at 
the lowest memory address



Giorgio Richelli
giorgio.richelli@uniroma1.it

Host Independent FormatsHost Independent Formats

x86 CPUs are LittleEndian, the network byte order is BigEndian

✔ from host byte order to network byte order:
- uint32_t htonl(uint32_t hostlong);
- uint16_t htons(uint16_t hostshort);

✔ from network byte order to host byte order:
- uint32_t ntohl(uint32_t netlong);
- uint16_t ntohs(uint16_t netshort);


	Slide 71
	Sockets
	Slide 73
	Slide 74
	Socket Types
	Slide 76
	Slide 77
	Socket System Calls
	Socket System Calls (Cont.)
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

