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SocketsSockets

✔ A socket is an endpoint of communication.
✔ An in-use socket it usually bound with an address
✔ The nature of the address depends on the communication domain 

of the socket.
- Unix, Internet, XEROX (historical)
- e.g. 161.25.19.8:1625 is an address in the Internet domain 

referring to:
 Host IPv4: 161.25.19.8
 Port: 1625
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✔ Communication can be estabilished between pairs of sockets.
✔ Each active socket has:

- Address
- Protocol

✔ Processes communication in the same domain use the same 
address format
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✔ A single socket can communicate in only one domain
✔ Commonly implemented domains:

- UNIX  (AF_LOCAL, PF_LOCAL)
- Internet  (AF_INET, PF_INET)

✔ Note:
- Originally it was thought that an address family might support 

several protocols.
- So the most correct thing would be:

 AF_INET in  struct sockaddr_in
 PF_INET in calls to socket(). 

- But in practice, you can always use AF_INET. 
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✔ Stream 
- Reliable, duplex, sequenced data streams.
- Supported in Internet domain by the TCP protocol.  
- In UNIX domain, pipes are implemented as a pair of 

communicating stream sockets.

✔ Sequenced packet
- Provide similar data streams, except that record boundaries are 

provided.  
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✔ Datagram:
- Transfer messages of variable size in either direction.  
- Supported in Internet domain by UDP protocol

✔ Reliably delivered message:
- Connectionless, message-oriented, preserving message 

boundaries
- Guaranteed to arrive  
- Almost  unsupported
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✔ Raw:
- Allow direct access by processes to the protocols that support the 

other socket types. 
- In the Internet domain, it is possible to reach:

TCP
 IP 
 Ethernet
  

✔ Useful for developing new protocols or for sniffers.

Socket TypesSocket Types
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✔ socket()
- creates a socket 

✔ bind()
- Assigns name and address to a socket

✔ server: listen()/accept() 
✔ client: connect() 

- Initiate the connection
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✔ close()
- terminates a connection and destroys the associated socket

✔ select() 
- multiplexes data transfers on several file descriptors (and /or 

socket descriptors).
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A server process usually calls:
✔ socket()

- to create a socket
✔ bind() 

- to bind an address 
✔ listen() 

- to indicate willingness to accept connections from clients
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A server process then calls (cont):
✔ accept() 

- to accept an individual connection
- eventually, fork() a new process after the accept()

✔ send() & recv()
-  to move data

✔ close() 
- when all is done on the connection
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A client process usually calls:
✔ socket()

- to create a socket
✔ connect() 

- to estabilish a connection with server
✔ send(), recv() 

- to move data
✔ close() 

- to close the connection
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int socket(int domain, int type, int protocol);
✔ creates an endpoint for communication and returns a descriptor
✔ domain: PF_UNIX, PF_INET, ...
✔ type: SOCK_STREAM, SOCK_DGRAM, ...
✔ protocol: 0, IPPROTO_TCP, IPPROTO_UDP, ...
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int bind(int sockfd, struct sockaddr *my_addr, 
socklen_t addrlen);
✔ gives  the  socket  sockfd  the local address my_addr (addrlen 

bytes long)
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int listen(int s, int backlog);
✔ specify willingness to accept incoming connections and a queue 

limit (for pending connections)
✔ s: socket
✔ backlog: maximum length for the queue  
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int accept(int s, struct sockaddr *addr, socklen_t 
*addrlen);
✔ extracts the first connection request  on  the queue  of  pending  

connections on s and creates a new connected socket with 
(mostly) the same properties

✔ s: socket
✔ addr:  will contain the from address
✔ addrlen: bytes available in addr
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ssize_t send(int s, const void *buf, size_t len, int 
flags);
✔ transmits a message to another socket
✔ s must be connected
✔ almost identical to write(), except for flags
✔ flags: MSG_DONTWAIT, MSG_DONTROUTE, ....
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ssize_t recv(int s, void *buf, size_t len, int flags);
✔ receives messages from a (connected) socket 
✔ almost identical to a read(), except for flags
✔ flags: MSG_PEEK, MSG_TRUNC, MSG_WAITALL, ...
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int connect(int sockfd, const struct sockaddr 
*serv_addr, socklen_t addrlen);
✔ attempts  to  connect sockfd to another socket, specified by 
serv_addr, which is an address (of length addrlen) in the 
communications  space  of  the  socket.

✔ returns:  0 / -1



Giorgio Richelli
giorgio.richelli@uniroma1.it

Socket System CallsSocket System Calls

int select(int n, fd_set *readfds, fd_set *writefds, 
fd_set  *exceptfds,  struct timeval *timeout);
✔ waits on a number of file descriptors (until, eventually, a timeout 

occurs)
✔ three sets of descriptors are watched:

- readfds see if characters become available for reading
- writefds will be watched to  see  if  a  write  will  not block
- exceptfds will be watched for exceptions

✔ macros to manipulate the sets:
- FD_ZERO, FD_SET, FD_CLR, FD_ISSET
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struct hostent *gethostbyname(const char *name);
✔ returns a structure of type hostent for the given host  name 

(either an host name, or an IP address) 
struct hostent {

  char    *h_name;        /* official name of host */

  char    **h_aliases;    /* alias list */

  int     h_addrtype;      /* host address type */

  int     h_length;          /* length of address */

  char    **h_addr_list; /* list of addresses */

}

#define h_addr  h_addr_list[0]  /* backw. compatibility */
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struct hostent *gethostbyaddr(const char *addr, int 
len, int type);
✔ returns a structure of type hostent for the given host address 

addr of length len and address type type.
✔ type:  AF_INET, AF_INET6
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✔ Big Endian 
- the most significant byte of any multibyte data field is stored at 

the lowest memory address
✔ Little Endian

- the least significant byte of any multibyte data field is stored at 
the lowest memory address



Giorgio Richelli
giorgio.richelli@uniroma1.it

Host Independent FormatsHost Independent Formats

x86 CPUs are LittleEndian, the network byte order is BigEndian

✔ from host byte order to network byte order:
- uint32_t htonl(uint32_t hostlong);
- uint16_t htons(uint16_t hostshort);

✔ from network byte order to host byte order:
- uint32_t ntohl(uint32_t netlong);
- uint16_t ntohs(uint16_t netshort);
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