
Project: AA 2022-2023

Computer Systems and Programming

Outline

● Development of a client-server application, which allows a
client to manage files and execute commands on a remote
system.

● You could develop the client either as:
– One monolithic application, implementing all the

features.
– A set of programs, each one to perform a single function.
– NB: syntax might be slightly different in the two cases.

● The server must be implemented as a daemon, running in
background, listening on a TCP socket.

Outline

● The server allows to:
– Copy files: copy
– Move files: move
– Delete files: delete
– List all files/dirs (name, size, date of last access): list
– Create a new directory: create_dir
– Delete a directory (only if empty): delete_dir
– Change the current working directory (only monolythic App.): cd

Example (monolithic app)

$ <myAppName> <remote_hostName|IP Address>
> copy file1.txt file2.txt
> delete file2.txt
> exit
$

Example (multiple programs)

copy file1.txt remote_host:file2.txt
● Copy the local file file1.txt to remote host remote_host as

file2.txt

delete remote_host:file2.txt
● Remove remote file file2.txt on server remote_host

Details

● Files can be identified both with relative or absolute path
(starting from a root directory defined in conf. file)

● Server must also be able to execute other commands, from
a list contained in the configuration file, by using the
command:
– run <cmd>
– It must be possible to create pipes, redirect output to

files, etc..
– As a default, stdin e stdout of the remote command will

be those of the run command on the client.

Example (multiple apps)

● run server:cmd
– Runs cmd on server (stdout to client)

● run server:”cmd1 | cmd2”
– Runs the pipe cmd1 | cmd2 on server (stdout to client)

● run server:”cmd > file”
– Runs cmd on server, output to remote file

● run server:cmd > file
– Runs cmd on server, output to local file

Example (monolithic app)

$ <myAppName> <remote_hostName|IP Address>
> run cmd
> run “cmd1 | cmd2”
> run “cmd > file”
> run cmd > file
> exit
$

More Details

● Actions must be performed with credentials (uid, gid) of the
user which executed the command (not those of the
daemon which should owned by nobody)

● Server must allow for multiple concurrent connections, using
processes (or threads)

More Details

● Requests are received on the TCP port specified in the
configuration file.

● Initial pseudo-root directory for the server is also indicated in
the configuration file (already existing).

● Navigation between directories must be limited to subtree
contained under the pseudo-root, not following symlinks.

● Commands contained in the configuration file must consist
in only the basename

More Details

● Access to files must be possible maintaining consistency:
– Single writer.
– Multiple concurrent readers

● Command line argument for the daemon is the path to a
configuration file, containing:
– TCP/UDP port
– Pseudo root
– List of command basenames

Configuration File Example (YMMV)

#Port
45000
#Root
/user/tmp/fakeRoot
#Cmds
sort
cat
sh256sum

Document It!

● The project “package” must contain:
– Source code (C, includes,..) with comments
– A document file describing:

● The design choices
● Main moduIes (macrocomponents) and their

implementation
● Command syntax
● Error Messages
● Known Bugs (...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

