
Giorgio Richelli
giorgio_richelli@it.ibm.com

Inter Process Communication (IPC)Inter Process Communication (IPC)



Giorgio Richelli
giorgio_richelli@it.ibm.com

IntroductionIntroduction

Processes and their address spaces are kept isolated by OS

The purposes of IPC:
✔ Data transfer
✔ Sharing data
✔ Event notification
✔ Resource sharing
✔ Process control



Giorgio Richelli
giorgio_richelli@it.ibm.com

IntroductionIntroduction

IPC primitives:
✔ Signals
✔ Pipes, Named Pipes, FIFO
✔ SYSV: Shared Memory, Semaphores, Message Queues
✔ BSD: Sockets



Giorgio Richelli
giorgio_richelli@it.ibm.com

SignalsSignals

Signal: 
✔ A way to start a procedure (handler) when some events occur.

Generation:
✔ By the kernel, when the event occurs
Delivery: 
✔ When the process recognizes the signal’s arrival (handling)
Pending
✔ Between generation and delivery



Giorgio Richelli
giorgio_richelli@it.ibm.com

SignalsSignals

Signals are identified by their 
number

✔ Could be different in different 
system or versions

- POSIX defines 16 
different signals



Giorgio Richelli
giorgio_richelli@it.ibm.com

SignalsSignals
✔ Linux has 64 signals



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

✔ Default actions: 
- What happens when the signal is delivered to a process
- Each signal has one

✔ Possible values:
- Abort: Terminate the process after generating a core dump.
- Exit: Terminate the process without generating a core dump.
- Ignore: Ignores the signal.
- Stop: Suspend the process.
- Continue:  Resume the process, if suspended

✔ Default actions may be overridden by <signal handlers>



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

A kernel routine, issig(), checks for pending signals
✔ Before returning to user mode from a system call or interrupt
✔ Just before blocking on an interruptible event
✔ Immediately after waking up from an interruptible event

Then:
✔ psig(): checks the signal action and if not ignored, defaulted, etc, 

calls: 
✔ sendsig(): which invokes the user-defined handler



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlingSignal Handling

Execute normal code

Signal 
delivered

Resume normal code

Signal handler runs



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal GenerationSignal Generation

Signal sources:
✔ Exceptions
✔ Terminal interrupts
✔ Job control
✔ Quotas
✔ Notifications
✔ Alarms
✔ Other processes



Giorgio Richelli
giorgio_richelli@it.ibm.com

Sleep and signalsSleep and signals

Interruptible sleep: 
✔ waiting for an event with indefinite time
✔ signals can be delivered

Uninterruptible sleep:
✔ waiting for a short term event such as disk I/O
✔ pending the signal
✔ Recognizing it before returning to user mode or blocking on another  

event
 if (issig()) psig();



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlersSignal Handlers

Signals handlers are installed by:

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

(now overridden by sigaction)



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal HandlersSignal Handlers

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,struct 
sigaction *oldact);

struct sigaction {

  void     (*sa_handler)(int);

  void     (*sa_sigaction)(int, siginfo_t *, void *);

  sigset_t   sa_mask;

  int        sa_flags;

  void     (*sa_restorer)(void); /* Don’t use this */

};



Giorgio Richelli
giorgio_richelli@it.ibm.com

Original Implementation: Unreliable SignalsOriginal Implementation: Unreliable Signals

✔ Signal handlers were not persistent and do not mask recurring 
instances of the same signal (SVR2)

✔ Race conditions:  two ^C.
✔ Performance: SIG_DFL, SIG_IGN:

- Kernel did not know the content of u_signal[];
- Awake, check, and perhaps go back to sleep again 

(waste of time).



Giorgio Richelli
giorgio_richelli@it.ibm.com

Reinstalling a signal handlerReinstalling a signal handler
void sigint_handler(int sig)
{ 

signal(SIGINT, sigint_handler); /* first instruction */
  …
}
main()
{ 

signal(SIGINT, sigint_handler);
…

}



Giorgio Richelli
giorgio_richelli@it.ibm.com

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>

int cnt=0;
void handler(int sig) 
{
    cnt++;
    printf("In the handler...\n");
    signal(SIGINT,handler);
}
main()
{
    signal(SIGINT,handler);
    while (1) {

printf("In main\n");
sleep(1);

    }
}

Unreliable SignalsUnreliable Signals



Giorgio Richelli
giorgio_richelli@it.ibm.com

Nowadays: Reliable SignalsNowadays: Reliable Signals

Primary features:
✔ Persistent handlers: need not to be re-installed.
✔ Masking: A signal can be temporarily masked (it will be delivered 

later)
✔ Sleeping processes:  let the signal disposition info visible to the 

kernel (now it is kept in the proc structure)
✔ Unblock and wait: 

- sigpause()/sigsuspend()
- automatically unmask and suspend the process



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signals in SVR4Signals in SVR4

✔ sigprocmask(how, setp, osetp)
- SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

✔ sigaltstack(stack, old_stack):
- Specify a new stack to handle the signal

✔ sigsuspend(sigmask)
- Set the blocked signals mask to sigmask and puts the 

process to sleep
✔ sigpending(setp)

-  setp contains the set of signals pending to the 
process



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signals in SVR4Signals in SVR4

✔  sigsendset(procset, sig)
- Sends the signal sig to the set of processes procset

✔  sigaction(signo, act, oact)
- Specify a handler for signal signo.
-  act, oact pointers to sigaction structure
-  oact is the previous sigaction data

✔ Compatibility interface: 
- signal, sigset, sighold, sigrelse, 

sigignore, sigpause



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal flagsSignal flags

✔ SA_NOCLDSTOP: Do not generate SIGCHLD when a child 
is suspended

✔ SA_RESTART: Restart system call automatically if 
interrupted by this signal

✔ SA_ONSTACK: Handle this signal on the alternate stack, if 
one has been specified by sigaltstack

✔ SA_NOCLDWAIT: sleep until all terminate
✔ SA_SIGINFO: additional info to the handler.
✔ SA_NODEFER: do not block this signal 
✔ SA_RESETHAND: reset the action to default



Giorgio Richelli
giorgio_richelli@it.ibm.com

Reliable SignalsReliable Signals
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <string.h>
 
static void hdl (int sig, siginfo_t *siginfo, void *context)
{
  printf("Signal %d From PID: %ld, UID: %ld\n",sig,siginfo->si_pid,siginfo->si_uid);
}
 
int main (int argc, char *argv[])
{
  struct sigaction act;
  memset (&act, 0, sizeof(act));
  act.sa_sigaction = &hdl;
  act.sa_flags = SA_SIGINFO;
 
  if (sigaction(SIGTERM, &act, NULL) < 0) {
    perror ("sigaction");
    return 1;
  }
  while (1) sleep (10);
  return 0;
}



Giorgio Richelli
giorgio_richelli@it.ibm.com

Other IPC FacilitiesOther IPC Facilities
✔ Signals are not enough
✔ Still useful for some purposes:

- kill
- User interaction (ctrl-c, ctrl-z) ..

✔ But :
-  <expensive> (timewise) and 
- Limited: only 32/64 



Giorgio Richelli
giorgio_richelli@it.ibm.com

Other IPC FacilitiesOther IPC Facilities
✔ Unidirectional Pipes
✔ FIFOs (named pipes)
✔ System V IPC
✔ Sockets
✔ ..



Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

It is an:
✔ Unidirectional
✔ FIFO
✔ Unstructured data stream 

                int pipe (int filedes[2]) 

Data

PP

P

P

P Data flow through a pipe.



Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

✔ *filedes is an array of two file descriptors

✔ Using a pipe:
- Write to filedes[1] 
- Read from filedes[0]



Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

✔ Writing to a pipe would block for large I/O sizes
- Limited bufferspace
- Value is system dependent

✔ Un-named pipes can only used between “relatives”
- using the inheritance mechanism available with fork()/exec()

✔ Often used in combination with dup()/dup2()



Giorgio Richelli
giorgio_richelli@it.ibm.com

Named PipesNamed Pipes

✔ Also called 'FIFO's
✔ Identified by their access point: path/filename

✔ Persistent 
✔ Have a filesystem inode

✔ Created by:
- mkfifo command
- int mkfifo(char *path, mode_t mode);



Giorgio Richelli
giorgio_richelli@it.ibm.com

Named PipesNamed Pipes

✔ Cannot be opened for >both< reading and writing (in the same 
process)

✔ read() and write() to a named pipe are blocking,by default

✔ Seek operations (lseek()) cannot be performed


	Slide 1
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	6.2Universal IPC Facilities
	Slide 23
	Pipes
	Slide 25
	Slide 26
	Slide 27
	Slide 28

