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IntroductionIntroduction

Processes and their address spaces are kept isolated by OS

The purposes of IPC:
✔ Data transfer
✔ Sharing data
✔ Event notification
✔ Resource sharing
✔ Process control
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IntroductionIntroduction

IPC primitives:
✔ Signals
✔ Pipes, Named Pipes, FIFO
✔ SYSV: Shared Memory, Semaphores, Message Queues
✔ BSD: Sockets
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SignalsSignals

Signal: 
✔ A way to start a procedure (handler) when some events occur.

Generation:
✔ By the kernel, when the event occurs
Delivery: 
✔ When the process recognizes the signal’s arrival (handling)
Pending
✔ Between generation and delivery
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SignalsSignals

Signals are identified by their 
number

✔ Could be different in different 
system or versions

- POSIX defines 16 
different signals
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SignalsSignals
✔ Linux has 64 signals
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Signal HandlingSignal Handling

✔ Default actions: 
- What happens when the signal is delivered to a process
- Each signal has one

✔ Possible values:
- Abort: Terminate the process after generating a core dump.
- Exit: Terminate the process without generating a core dump.
- Ignore: Ignores the signal.
- Stop: Suspend the process.
- Continue:  Resume the process, if suspended

✔ Default actions may be overridden by <signal handlers>
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Signal HandlingSignal Handling

A kernel routine, issig(), checks for pending signals
✔ Before returning to user mode from a system call or interrupt
✔ Just before blocking on an interruptible event
✔ Immediately after waking up from an interruptible event

Then:
✔ psig(): checks the signal action and if not ignored, defaulted, etc, 

calls: 
✔ sendsig(): which invokes the user-defined handler
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Signal HandlingSignal Handling

Execute normal code

Signal 
delivered

Resume normal code

Signal handler runs
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Signal GenerationSignal Generation

Signal sources:
✔ Exceptions
✔ Terminal interrupts
✔ Job control
✔ Quotas
✔ Notifications
✔ Alarms
✔ Other processes
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Sleep and signalsSleep and signals

Interruptible sleep: 
✔ waiting for an event with indefinite time
✔ signals can be delivered

Uninterruptible sleep:
✔ waiting for a short term event such as disk I/O
✔ pending the signal
✔ Recognizing it before returning to user mode or blocking on another  

event
 if (issig()) psig();
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Signal HandlersSignal Handlers

Signals handlers are installed by:

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

(now overridden by sigaction)
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Signal HandlersSignal Handlers

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,struct 
sigaction *oldact);

struct sigaction {

  void     (*sa_handler)(int);

  void     (*sa_sigaction)(int, siginfo_t *, void *);

  sigset_t   sa_mask;

  int        sa_flags;

  void     (*sa_restorer)(void); /* Don’t use this */

};
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Original Implementation: Unreliable SignalsOriginal Implementation: Unreliable Signals

✔ Signal handlers were not persistent and do not mask recurring 
instances of the same signal (SVR2)

✔ Race conditions:  two ^C.
✔ Performance: SIG_DFL, SIG_IGN:

- Kernel did not know the content of u_signal[];
- Awake, check, and perhaps go back to sleep again 

(waste of time).
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Reinstalling a signal handlerReinstalling a signal handler
void sigint_handler(int sig)
{ 

signal(SIGINT, sigint_handler); /* first instruction */
  …
}
main()
{ 

signal(SIGINT, sigint_handler);
…

}
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#include <stdio.h>
#include <sys/types.h>
#include <signal.h>

int cnt=0;
void handler(int sig) 
{
    cnt++;
    printf("In the handler...\n");
    signal(SIGINT,handler);
}
main()
{
    signal(SIGINT,handler);
    while (1) {

printf("In main\n");
sleep(1);

    }
}

Unreliable SignalsUnreliable Signals
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Nowadays: Reliable SignalsNowadays: Reliable Signals

Primary features:
✔ Persistent handlers: need not to be re-installed.
✔ Masking: A signal can be temporarily masked (it will be delivered 

later)
✔ Sleeping processes:  let the signal disposition info visible to the 

kernel (now it is kept in the proc structure)
✔ Unblock and wait: 

- sigpause()/sigsuspend()
- automatically unmask and suspend the process



Giorgio Richelli
giorgio_richelli@it.ibm.com

Signals in SVR4Signals in SVR4

✔ sigprocmask(how, setp, osetp)
- SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

✔ sigaltstack(stack, old_stack):
- Specify a new stack to handle the signal

✔ sigsuspend(sigmask)
- Set the blocked signals mask to sigmask and puts the 

process to sleep
✔ sigpending(setp)

-  setp contains the set of signals pending to the 
process
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Signals in SVR4Signals in SVR4

✔  sigsendset(procset, sig)
- Sends the signal sig to the set of processes procset

✔  sigaction(signo, act, oact)
- Specify a handler for signal signo.
-  act, oact pointers to sigaction structure
-  oact is the previous sigaction data

✔ Compatibility interface: 
- signal, sigset, sighold, sigrelse, 

sigignore, sigpause
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Signal flagsSignal flags

✔ SA_NOCLDSTOP: Do not generate SIGCHLD when a child 
is suspended

✔ SA_RESTART: Restart system call automatically if 
interrupted by this signal

✔ SA_ONSTACK: Handle this signal on the alternate stack, if 
one has been specified by sigaltstack

✔ SA_NOCLDWAIT: sleep until all terminate
✔ SA_SIGINFO: additional info to the handler.
✔ SA_NODEFER: do not block this signal 
✔ SA_RESETHAND: reset the action to default
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Reliable SignalsReliable Signals
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <string.h>
 
static void hdl (int sig, siginfo_t *siginfo, void *context)
{
  printf("Signal %d From PID: %ld, UID: %ld\n",sig,siginfo->si_pid,siginfo->si_uid);
}
 
int main (int argc, char *argv[])
{
  struct sigaction act;
  memset (&act, 0, sizeof(act));
  act.sa_sigaction = &hdl;
  act.sa_flags = SA_SIGINFO;
 
  if (sigaction(SIGTERM, &act, NULL) < 0) {
    perror ("sigaction");
    return 1;
  }
  while (1) sleep (10);
  return 0;
}
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Other IPC FacilitiesOther IPC Facilities
✔ Signals are not enough
✔ Still useful for some purposes:

- kill
- User interaction (ctrl-c, ctrl-z) ..

✔ But :
-  <expensive> (timewise) and 
- Limited: only 32/64 
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Other IPC FacilitiesOther IPC Facilities
✔ Unidirectional Pipes
✔ FIFOs (named pipes)
✔ System V IPC
✔ Sockets
✔ ..
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PipesPipes

It is an:
✔ Unidirectional
✔ FIFO
✔ Unstructured data stream 

                int pipe (int filedes[2]) 

Data

PP

P

P

P Data flow through a pipe.
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PipesPipes

✔ *filedes is an array of two file descriptors

✔ Using a pipe:
- Write to filedes[1] 
- Read from filedes[0]



Giorgio Richelli
giorgio_richelli@it.ibm.com

PipesPipes

✔ Writing to a pipe would block for large I/O sizes
- Limited bufferspace
- Value is system dependent

✔ Un-named pipes can only used between “relatives”
- using the inheritance mechanism available with fork()/exec()

✔ Often used in combination with dup()/dup2()
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Named PipesNamed Pipes

✔ Also called 'FIFO's
✔ Identified by their access point: path/filename

✔ Persistent 
✔ Have a filesystem inode

✔ Created by:
- mkfifo command
- int mkfifo(char *path, mode_t mode);
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Named PipesNamed Pipes

✔ Cannot be opened for >both< reading and writing (in the same 
process)

✔ read() and write() to a named pipe are blocking,by default

✔ Seek operations (lseek()) cannot be performed
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