
Midterm#4
Dec. 20th

Write a “parallel file transfer” application where a server accepts connections from clients willing
store files. The file transfer will be performed in parallel over multiple TCP connections.

The server, upon startup, creates a socket on a well known port and starts listening for requests from
clients.

A client, willing to store/retrieve a file (put/get) forks multiple processes, the number of which is
defined in an environment variable.

The forked processes then connect to the server and transfer chunks (a portion of the file for each
process) to the remote site.

Example

$ export NPIECES=4

$ client put mylargefile

$ client get mylargefile

Hints:

Use the getenv() function to retrieve environment variables.

The client could either read the whole file into memory, and then split it for the transfer (dangerous for
large files), or combine open()/stat()/lseek()/read(). The same goes for transfers in the
opposite direction

Remote file names could be managed by clients (e.g. a unique name for each chunk of the original file).

The server could fork a new process for each connection. The new process could get the needed
information during the initial part of the transfer (i.e the first packet might contain the filename and the
chunk’s size, to avoid the server running out of space).

This will split and transfer the file in 4 pieces,
storing each chunk in a different file on the server.

This will receive and reassemble the 4 pieces, from
the chunks stored on the server.

2a
<DATA>

1
Get <Filename>

2
DATA/NOK

2a

1a
Put <filename>,<size>

1a

2b
OK/NOK

2b

1b
OK/NOK

1b

PUT Handshake

GET Handshake

	Example
	Hints:

