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Abstract. Molecular dynamics simulations are a common and often
repeated task in molecular biology. The need for speeding up this treat-
ment comes from the requirement for large system simulations with many
atoms and numerous time steps. In this paper we present a new approach
to high performance molecular dynamics simulations on graphics process-
ing units. Using modern graphics processing units for high performance
computing is facilitated by their enhanced programmability and moti-
vated by their attractive price/performance ratio and incredible growth
in speed. To derive an efficient mapping onto this type of architecture,
we have used the Compute Unified Device Architecture (CUDA) to de-
sign and implement a new parallel algorithm. This results in an imple-
mentation with significant runtime savings on an off-the-shelf computer
graphics card.

1 Introduction

The fast increasing power of the Graphics Processing Unit (GPU) and its stream-
ing architecture opens up a range of new possibilities for a variety of applications.
With the enhanced programmability of commodity GPUs, these chips are now
capable of performing more than the specific graphics computations they were
originally designed for. Recent work shows the design and implementation of
algorithms for non-graphics applications. Examples include scientific computing
[1], image processing [2], computational biology [8/4], and fast Fourier trans-
form [5], just to name a few. The evolution of GPUs is driven by the computer
game market. This leads to a relatively small price per unit and to very rapid
developments of next generations.

Currently, the peak performance of state-of-the-art GPUs is approximately
ten times faster than that of comparable CPUs. Furthermore, the growth rate of
the number of transistors used on GPUs is greater than for microprocessors [6].
Consequently, GPUs will become an even more attractive alternative for high
performance computing in the near future.

However, there are still a number of challenges to be solved in order to enable
scientists other than computer graphics specialists to facilitate efficient usage of

S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 185 2007.
© Springer-Verlag Berlin Heidelberg 2007



186 W. Liu et al.

these resources within their research area. The biggest challenge in order to solve
a specific problem using GPUs is reformulating the proposed algorithms and data
structures using computer graphics primitives (e.g. triangles, textures, vertices,
fragments). Furthermore, restrictions of the underlying streaming architecture
have to be taken into account, e.g. random access writes to memory is not
supported and no cross fragment data or persistent state is possible (e.g. all the
internal registers are flushed before a new fragment is processed).

The Compute Unified Device Architecture (CUDA) [7] is a new hardware and
software architecture for issuing and managing computations on GPUs. It treats
the GPU as a data-parallel computing device without the need of mapping com-
putations to the graphics pipeline. CUDA technology gives computationally in-
tensive applications access to the tremendous processing power of GPUs through
a revolutionary new programming interface. Providing orders of magnitude more
performance and simplifying software development by using the standard C lan-
guage, CUDA enables developers to create innovative solutions for data-intensive
problems.

Molecular dynamics (MD) is a computationally intensive method of studying
the natural time-evolution of a system of atoms using Newton’s classical equa-
tions of motion. In practice, MD has always been limited more by the current
available computing power than by investigators’ ingenuity. Researchers in this
field have typically focused their efforts on simplifying models and identifying
what may be neglected while still obtaining acceptable results. This has led to
much skepticism on the ability of MD to be used as a predictive tool for experi-
mental work. High-performance computing holds the key to making biologically
relevant calculations tractable without compromise. In this paper we show how
MD simulations can benefit from the computing power of GPUs. In order to
exploit the GPU’s capabilities for high performance MD simulation we present
new algorithms based on the CUDA programming model. These algorithms have
been implemented using C++ and CUDA and tested on a physical system of
16,384 atoms. We show that our new MD algorithms lead to a significant per-
formance improvement on an NVIDIA GeForce 8800 GTX card.

The rest of this paper is organized as follows. In Section 2l we introduce the
basic MD simulation algorithms and highlight previous work on parallelization
of these algorithms on different parallel architectures. Important features of the
CUDA programming model are described in Section Bl Section Hl presents our
new CUDA-based MD algorithms and their efficient GPU implementation. A
performance evaluation is given in Section [ Finally, Section [ concludes the
paper with an outlook to further research topics.

2 Molecular Dynamics Simulations

Computer simulations play a very important role in scientific research. They
act as bridges among microscopic length, time scales and the macroscopic world
of the laboratory [8]. In very broad terms, we can identify two categories of
computer simulation techniques: MD and Monte Carlo (MC). In contrast with
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the MC method, MD is a deterministic technique. That is, given an initial set of
parameters, the subsequent time evolution is in principle completely determined
[9). In an MD simulation, the time evolution of an atomic system is followed
by integrating their equations of motion described by the following classical
equations of motion:

{ Fi = m;a;

1
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In Eq.(d), the atomic system contains N atoms. m; is the atom mass, a; =
d?r; /dt? is its acceleration, and Fj is the force acting upon it. V (r1,...,7y) is the
function of the positions of the atoms. It represents the potential energy of the
system. In practice, function V' can be written as a sum of pairwise interactions:
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In Eq.(@)), the three body (and higher order) interactions are usually neglected
[10], only leaving the pair potential as the concentration of the simulation. In
practice, the Lennard-Jones (LJ) potential [I1] is the most commonly used in-
teraction model. It is given by the following expression:

=) 0]

where r is the distance between two interacting atoms, ¢ is the diameter and
€ is the well depth. Both € and § are constants and they are chosen to fit the
physical properties of the material.

One of the most time-consuming parts in MD simulations is the computation
of interaction forces, which takes more than 90% of the total simulation time [12].
From Eq.(2.2) and (2.3) we can see this is mainly because the force computation
requires to calculate the interactions between each atom in the system with every
other atom, giving rise to O(N?) evaluations of the interaction in each time
step. The interaction forces decrease rapidly with increasing distance between
atoms. Thus, it is possible to neglect forces between atoms separated by more
than a cutoff distance r.. This means an atom has only interaction forces with
atoms that are in a sphere with a radius equal to r. [I0]. The cutoff method is
also called the neighbor list method. It reduces the computational complexity
to O(N). Forces computed using the cutoff method are also called short-range
forces.

Figure [ illustrates how to reduce computational complexity by using the
cutoff method. When the neighbor list is built, all of the nearby atoms within an
extended cutoff distance 75 = r. + skin are stored. At the first step in a MD
simulation, the neighbor list is constructed for all the neighbors of each atom.
From time to time the list is reconstructed.

Because of their inherent parallelism [I3], MD simulations are suitable can-
didates for mapping onto parallel architectures. In the past twenty years, re-
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Fig. 1. Make use of r. and skin to construct the neighbor list

searchers have exploited MD’s parallelism on various parallel machines. In ad-
dition to architectures specifically designed for MD simulations, existing pro-
grammable sequential and parallel architectures have been used for solving them.

Special-purpose architectures can provide the fastest means of running a par-
ticular algorithm with very high processing element (PE) density. Each PE is
specifically designed for the pariwise force calculation. However, such architec-
tures are limited to one single algorithm, and thus cannot supply the flexibility
necessary to run a variety of algorithms required for MD simulations. GRAPE
[14] is a series of application specific processor designs, which is specially built to
accelerate the MD simulations. More recent examples, better tuned to the needs
of MD simulations, include ATOMS [15], FASTRUN [16], and MDGRAPE-3 [17].

Considerable effort has been spent by researchers to implement MD simulation
algorithms on vector supercomputers [I8]. Several other approaches are based
on SIMD or MIMD parallel machines with a few dozens of processors [I9120].
SIMD and MIMD architectures are programmable and can be used for a wider
range of applications. Since these architectures contain more general-purpose
parallel processors, their PE density is less than the density of special-purpose
architectures. Nevertheless, these solutions can still achieve significant runtime
savings. However, the costs involved in designing and producing SIMD archi-
tectures are quite high. As a consequence, none of the above solutions has a
successor generation, making upgrading impossible.

All these approaches can be seen as accelerators — an approach satisfying
the demand for a low cost solution to compute-intensive problems. The main
advantage of GPUs compared to the architectures mentioned above is that they
are commodity components. In particular, most users have already access to PCs
with modern graphics cards. For these users this direction provides a zero-cost
solution. Even if a graphics card has to be bought, the installation of such a card
is trivial (plug and play). Writing the software for such a card does still require
specialist knowledge, but new high-level programming models such as CUDA [7]
offer a simplified programming environment.
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3 CUDA Programming Model for Computing on GPUs

Compute Unified Device Architecture (CUDA) is a novel hardware and pro-
gramming model for issuing and managing computations on the GPU as a
data-parallel computing device without the need of mapping them to a graphics
APT [21]. For now, it is available for NVIDIA 8800 series, NVIDIA Quadro FX
5600/4600, and beyond.

From the hardware point of view, CUDA treats the GPU as a set of SIMD
multiprocessors. Each multiprocessor is composed of eight processors. The mul-
tiprocessor specifications of NVIDIA 8800 series and Quadro FX 5600/4600 are
shown in Table [l

Table 1. General specifications for NVIDIA CUDA-ready GPUs [21]

Number of Clock frequency Amount of device

Multiprocessors (GHz) memory (MB)
GeForce 8800 GTX 16 1.35 768
GeForce 8600 GTX 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768

A multiprocessor has on-chip memory of four types:

1
2

one set of registers per processor,

a parallel data cache or shared memory,
a read-only constant cache,

a read-only texture cache.

(1)
(2)
(3)
(4)
These on-chip memories are used to implement fast I/O operations, especially,
to speed up read and write access to the non-cached device memory. Thus,
applications can take advantage of them by minimizing over-fetch and round-
trips to the low bandwidth device memory. Although the device memory has a
low bandwidth, it is big in size and shared by all multiprocessors.

In the CUDA programming model, each multiprocessor is viewed as a multi-
core device that is capable of executing a very high number of threads in parallel.
These threads are organized as thread blocks. Threads in the same thread block
can cooperate together by efficiently sharing data and synchronizing their ex-
ecution to coordinate memory access with other threads. However, threads in
different thread blocks cannot communicate or synchronize with each other. The-
oretically, having more active threads per multiprocessor can help hide memory
latency, and can also better fill the instruction pipeline so there are no idle
processors. According to [2I], the maximum number of threads that can run
concurrently on a multiprocessor is 768. In practice, the number of threads is
further limited by the shared on-chip memory and hence, the maximal number
of threads is application-dependent.
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4 CUDA-Based MD Simulation Algorithms

Many parallel algorithms for MD simulations have been proposed and imple-
mented by different researchers. The details of these algorithms vary widely since
there are numerous application-dependent and architecture-dependent charac-
ters to consider. Generally, from the point of view of data decomposition, they
can be categorized into three types:

(1) Atom-decomposition (AD): Each processor is assigned a subset of N/P
(N is the number atoms; P is the number of processors) atoms at the begin-
ning of the simulation. As each processor must keep identical copies of atom
information, it is also called replicated-data method [I3]. The AD method
has been widely used especially on shared memory architectures.

(2) Force-decomposition (FD): In this method, a subset of the force loops
inherent in Eq.(2.2) is assigned to each processor. It reduces the expensive
communication and memory costs by a factor v P compared with the AD
method. However, FD cannot maintain load-balance as easily as AD.

(3) Spatial-decomposition (SD): This method corresponds to a geometric
decomposition of the physical simulation domain. Each processor computes
only the forces on atoms in its sub-domain. As the simulation progresses, pro-
cessors exchange atoms when they move from one sub-domain to another.
SD is very well suited to large-scale MD simulations. It achieves optimal
O(N/P) scaling and achieves better performance on Coarse-grained archi-
tectures, such as Clusters, than AD and FD [13].

In this section we describe how MD simulations can be efficiently mapped
onto a GPU using CUDA. We take advantage of the inherent parallelism of
MD simulations and design parallel algorithms using the AD method. The main
reasons we choose the AD method to design our algorithms is: (1) good load bal-
ancing and scalability can be easily achieved, (2) according to the CUDA model
described in Section Bl the GPU hardware is viewed as a shared memory multi-
processor system, the AD method can give good performance in such a system.

The outline in Figure [ illustrates how a sequential MD simulation works. In
Figure 2l the computational complexity of each operation is listed on the end of
them. In practice, the neighbor list update and force computation are the most
time-consuming operations in each time step.

In the neighbor list update step (step (4) in Figure [), a list is constructed
for all neighbors of each atom. There are a large number of pairwise calculations
in this step: each atom will loop over all other atoms to compute the pairwise
distance between them. This corresponds to compute an N x N distance matrix
D. As rjj == rj;, only the lower triangle matrix has to be computed, thus the
calculation is half reduced. If the pairwise distance with the head atom of current
column is within ry;5 (see Section Bl), the index of current atom is added into
the neighbor list array of current head atom.

There are two problems we should consider when design our CUDA-based
neighbor list update algorithm. First, as mentioned in Section B in CUDA,
thread blocks cannot communicate or synchronize with each other. This
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1. Initialize atoms’ status and the LJ potential table;
set parameters controlling the simulation; O(N)
2. For all time steps do
Update positions of all atoms; O(N)
4. If there are atoms who have moved too much, do
Update the neighbor list, including all atom pairs that are within a
distance range (half distance matrix computation); O(N?)
End if
Make use of the neighbor list to compute forces acted on all atoms; O(N)
Update velocities of all atoms; O(N)
Update the displace list, which contains the displacements of atoms; O(N)
Accumulate and output target statistics of each time step; O(N)
End for

w

© XN

Fig. 2. The outline of a sequential MD simulation (with the computation complexity
listed, N is the number of atoms)

limitation will make the full computation of the distance matrix D necessary. For
example, assume each column of the distance matrix D is assigned to a single
thread and there are two threads in a thread block (see Figure ().

In Figure [ if we only calculate the lower triangle matrix then except for
Thread 1, all other threads cannot keep the whole information of local neighbor
list. For instance, as to Thread 4, the current head atom 4 will not know whether
atoms 1, 2 and 3 are in the local neighbor list or not. In order get this information,
Thread 4 must access the local neighbor lists of atoms 1, 2 and 3. In CUDA,
this access is very expensive because it has to be done in the low bandwidth
device memory. In order to solve this problem, we let each thread loop over all
other atoms for current head atom. That is, in Figure [J] both the lower triangle
and upper triangle matrices are calculated. Figure [ shows our algorithm for
neighbor list update using CUDA. Because the coordinates of head atoms will
be reused many times in the inner loop over all other atoms in order to calculate
pairwise distances, we put them into a register before the inner loop so as to
speedup access for them.

After the neighbor list update step, the indices of all eligible atoms will be
stored in the neighbor list array in the device memory for later usage. This is
mainly because the size of the neighbor list may be very large and there is no
enough on-chip memory to store it. During the compute force step, each thread
will loop over the local neighbor lists to do force calculations.

Figure[fl gives our CUDA-based algorithm for the force computation. Because
the coordinates of head atoms and the forces acted on them are reused many
times in the inner loop over all atoms in the neighbor list, we put them into
registers before the inner loop so as to increase the access efficiency for them.
The results of force computation f; will be used by other operations, such as the
position and velocity update operations (step (3) and (6) in Figure2]), so we put
them into a dynamically allocated shared memory to speedup access to them.



192 W. Liu et al.

® & @& 1@ - 1@ 1@
20 20 20 20 - 2@ 2@
30 30 @0 @ - 3@ 3@
10 40 40 @ - ‘@ @
N2O N2 N2 N20 e N2@ N-2@
N-1O N0 MO N0 oo N1@ M@
O ~NO NO VO NO V@
Thread 1 Thread 2 Thread 3 Thread 4 Thread p Thread ¢

\ J \ J \ J

Thread Block 1 Thread Block 2 Thread Block m

Fig. 3. Parallel neighbor list update illustration (Red circles denote head atoms). As-
sume each thread is allocated one column of the distance matrix and each thread block
consists of two threads.

1. For all allocated head atoms do

2 Put the coordinates of current head atom into a register;

3. For all atoms exclude the current head atom do

4 Compute the pairwise distance between the current atom and
head atom (full distance matrix computation);

5. Compare the pairwise distance with r;;5; and put the indices
of eligible atoms into the neighbor list in the device memory;

6. End for

Reset the displace list of current head atom with the value 0;
End for

® N

Fig. 4. CUDA-based neighbor list update algorithm

Figure [d shows our CUDA-based MD simulation algorithm. In order to elim-
inate the overhead for launch multiple kernels, we have put all time step loops
into a single kernel. As the kernel cannot output results directly, all statistics
have to be read back to CPU for further processing and outputting.



Molecular Dynamics Simulations on Commodity GPUs with CUDA 193

1. For all allocated head atoms do

2. Put the coordinates of current head atom ¢ into a register;
3. Set the value of forces acted on atom i as 0
(fi =0, f; is put into a register);
4. For atoms in the current neighbor list do
5. Compute the distance d;; between the current
atom j and head atom ¢;
6. If dij <r.do
7. Calculate and accumulate the force f; acted on atom i;
8. End if
9. End for
10. Put the value of f; into on-chip shared memory;
11. End for

Fig. 5. CUDA-based force computation algorithm

/*Host program executed on CPU*/
1. Initialize atoms’ status and the LJ potential table;
set parameters controlling the simulation;
2. Load data into GPU device memory and launch the kernel;
/*Kernel program executed on GPU*/
3. For all time steps do

4. Update positions of all atoms;
5. If there are atoms who have moved too much, do
CUDA-based neighbor list update algorithm,;
End if
6. CUDA-based force computation algorithm:;
7. Update velocities of all atoms;
8. Update the displace list;
9. Put statistics of each time step into the device memory;
10. End for

11. Read back statistics to CPU;

12. For all time steps do

13. Output statistics of each time step;
14. End for

Fig. 6. CUDA-based MD simulation algorithm

5 Performance Evaluation

We have implemented the proposed algorithm using CUDA Toolkit 0.8 [7] and
evaluated it on the following graphics card:
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- nVidia GeForce 8800 GTX: 1.35 GHz engine clock speed, 16 multiprocessors,
768 MB device memory, 16 KB shared memory /multiprocessor.

Tests have been conducted with this card installed in a PC with an AMD
Opteron 2210 1.8GHz, 2GB RAM running Windows XP.

Table 2. Comparison of runtimes (in milliseconds) and speedups of MD simulation
running on a single Pentium4 3GHz to our GPU-accelerated version running on an
AMD Opteron 2210 1.8GHz with an NVIDIA GeForce 8300 GTX 512 for various time
steps. The cutoff distance is fixed at 2.56.

Time steps 100 200 300 400 500

Indices in the neighbor list 1096077 1096077 1096077 1096077 1096077
MD-CPU  Overall(ms) 22468 36063 49703 63406 78078
MD-GPU  Kernel(ms) 1168 1914 2656 3399 4149
(8800GTX) Overall(ms) 1468 2265 3078 3875 4671
Speedup Overall 15.3 15.9 16.1 16.4 16.7

A set of performance evaluation tests have been conducted using different
numbers of time steps and cutoff distances, to evaluate the processing time of the
GPU implementation versus that of the original MD simulation on the PC. The
MD simulation program is benchmarked on an Intel Pentium IV 3GHz processor
with 1GB RAM. We have modified the MD code (md3.f90) from Ercolessi ([9],
available online at http://www.fisica.uniud.it/ ercolessi/md/f90/) into a 32bit
version for our evaluation. This is because for now, there is only a 32bit version
of CUDA. In our experiments, there are 16,384 atoms in the simulated physical
system.

Table 3. Comparison of runtimes (in milliseconds) and speedups of MD simulation
running on a single Pentium4 3GHz to our GPU-accelerated version running on an
AMD Opteron 2210 1.8GHz with an NVIDIA GeForce 8300 GTX 512 for various
cutoff distances. The time step is fixed at 100.

Te 2.56 3.0 3.56 4.06 4.56

Indices in the neighbor list 1096077 1597512 2549064 3243673 4607456
MD-CPU  Overall(ms) 22468 29984 41234 53984 69765
MD-GPU  Kernel(ms) 1168 1634 2309 3111 4446
(8800GTX) Overall(ms) 1468 1968 2641 3437 4796
Speedup Overall 15.3 15.2 15.6 15.7 14.5

Table 2] reports the performance of the sequential MD and our CUDA im-
plementation for different time steps. In Table B we set the cutoff distance r.
2.56 and skin 0.58. Table [l shows the performance of the sequential MD and our
CUDA implementation for different cutoff distances. In Table Bl we make both
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programs run 100 time steps while skin = 0.56. From Table[2 and Table[Blwe can
see, our GPU implementation achieves speedups of almost seventeen compared
to the sequential MD simulation runtime.

6 Conclusions and Future Work

In this paper we have introduced CUDA-based MD simulation algorithms that
can be efficiently implemented on modern graphics hardware. We have made use
of the fast on-chip memory in CUDA to design and implement our algorithms.
All key components of our algorithms have been mapped onto the GPU for
execution. The evaluation of our implementation on a high-end graphics card
shows a speedup of almost seventeen compared to a Pentium IV 3.0GHz. The
results are especially encouraging and to our knowledge this is the first reported
implementation of MD simulations on graphics hardware using CUDA.

Our implementation of the MD simulation algorithm using CUDA is quite
generic. Our future work will include the extension and integration of this im-
plementation into Gromacs [22] and Autodock [23].
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