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This article is a survey of research areas in which motion plays a pivotal role. The aim
of the article is to review current approaches to modeling motion together with related
data structures and algorithms, and to summarize the challenges that lie ahead in
producing a more unified theory of motion representation that would be useful across
several disciplines.

Categories and Subject Descriptors: F.2.2 Analysis of Algorithms and Problem
Complexity: Nonnumerical Algorithms and Problems—Computations on discrete
structures, Geometrical problems and computations; I.6.5 Simulation and Modeling:
Model Development—Modeling methodologies

General Terms: Algorithms

Additional Key Words and Phrases: Computational geometry, computer vision, mobile
networks, modeling, molecular biology, motion modeling, physical simulation, robotoics,
spatio-temporal databases

1. INTRODUCTION

Motion is ubiquitous in the physical world.
Computational models of physical objects

and processes, from protein folding in bi-
ology to assembly planning in manufac-
turing, from connectivity in mobile com-
munications networks to location-based
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services in spatial databases, and from
ecological models in environment science
to galactic evolution in astrophysics must
deal with representing mobile data and
their evolution over time. It is instructive
to draw a comparison with another modal-
ity that permeates modeling the physical
world as much as motion, namely shape.
Over the years computational shape rep-
resentations are intensely studied and a
variety of approaches have been devel-
oped for modeling the different shapes
that arise in applications. Entire disci-
plines, such as CAGD (computer-aided ge-
ometric design), evolved, in this case de-
voted to the study of the smooth shapes
needed by the automotive and aerospace
industries. What is striking when we com-
pare motion to shape, however, is how rich
and complex the space of representations
for motion can be. For one, motion is of-
ten described intensionally—by specifying
what the motion needs to accomplish, and
not what the motion is. For another, mo-
tion happens over time, and in the physical
world unpredictable events can occur that
change the evolution of a system; this on-
line character of motion must be modeled.

Both military and civilian applica-
tions (digitized battlefields, automatic
target recognition, mobile communica-
tions, virtual environments, animation,
physics-based simulation, animation of
deformable objects, to name a few) have
raised a wide range of algorithmic issues
in modeling motion and in coping with con-
tinuously moving objects. Although a vast
amount of work has been done on model-
ing, analyzing, searching, processing, and
visualizing geometric objects, most of the
work has focused by and large on handling
static objects and on dynamic data struc-
tures, which can update the information
as objects are inserted or deleted at dis-
crete times. These approaches are, how-
ever, not suitable for handling moving or
deforming objects because either the algo-
rithm has to be executed continuously, or
the solution returned will be at times obso-
lete. The on-line nature of motion makes it
difficult to consider time simply as another
dimension and regard the moving object as
a static object in space-time. Algorithms

that can handle continuous motion, what
we call kinetic algorithms, are needed in
such applications.

Despite a flurry of activity in several ar-
eas in the last few years on modeling mo-
tion and on developing efficient algorithms
that deal with moving objects, most of the
work to date has been scattered among a
number of fields, and a unified algorithmic
theory of motion that permeates across
multiple disciplines and applications is
missing. In Sections 2–9, we survey the
state of the art in motion modeling across
many areas—computational geometry,
mesh generation, physical simulation, bi-
ology, computer graphics, computer vi-
sion, robotics, spatio-temporal databases,
and mobile wireless networks—and sug-
gest that a synergy among these areas is
needed, since many issues are common
to all of them; furthermore, many real-
world applications require the integration
of techniques from a wide range of dis-
ciplines. We conclude in Section 10 by
highlighting a number of challenges that
lie ahead in creating a firm algorithmic
theory for the processes of acquiring, mod-
eling, reasoning about, planning, manipu-
lating, and executing motion.

2. COMPUTATIONAL GEOMETRY

Earlier work on moving objects in
computational geometry, initiated by
a paper by Atallah [1985], focused on
bounding the number of combinatorial
changes in geometric structures as the
objects move along prescribed trajectories
[Agarwal and Sharir 2000]. In the late
1980s, algorithms were developed for
computing the changes in geometric
structures as objects undergo motion
[Kahan 1991]. However, these results
assume an off-line model of motion in
which the trajectories are given in ad-
vance, a relatively uncommon situation.
In practice, researchers were using fixed-
rate sampling methods to handle moving
objects, in which a structure is updated
at fixed time intervals and therefore the
fastest moving object gates the time step
for the entire system. The kinetic data
structure (KDS) framework introduced by
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Guibas et al. [Basch et al. 1997] alleviated
many of the problems with the off-line and
fixed-rate-sampling methods. The main
idea in the kinetic framework is that even
though objects move continuously, the
relevant combinatorial structure changes
only at certain discrete times and there-
fore one does not have to update the data
structure continuously. The validity of the
combinatorial structure is certified by a
number of elementary assertions about
the state of the system called certificates.
Kinetic updates are performed on the data
structure only when certain kinetic events
occur, corresponding to certificate failures,
which can be monitored at different rates.

Kinetic data structures have led to ef-
ficient algorithms and data structures for
a wide range of problems. However, in or-
der for KDS and other motion models to be
made more realistic, several issues need to
be addressed.

(1) Motion Sensitivity. The motions of
objects in the world are often highly cor-
related, therefore, it is desirable to find
representations and data structures that
exploit such motion coherence. It is also
important to find mathematical measures
that capture how coherent motions are
and then use this coherence as a parame-
ter to quantify the performance of motion
algorithms. If we do not do this, our algo-
rithm design may be aimed at unrealis-
tic worst-case behavior, without capturing
solutions that exploit the special structure
of the motion data that actually arise in
practice. Most kinetic algorithms to date
have been analyzed under the model in
which each object follows an independent
smooth trajectory defined by a small set of
parameters, and the algorithm’s efficiency
is measured by the worst-case behavior
over all such possible motions. A challeng-
ing issue is the development of a class of ki-
netic motion-sensitive algorithms, whose
performance can be expressed as a func-
tion of how coherent the motions of the
underlying objects are.

(2) Trade-Offs between Complexity Mea-
sures. The performance of a kinetic algo-
rithm can be measured by the number of
events it processes, the time spent in up-

dating the structure at each event, and the
size of the structure. Although optimal or
near-optimal algorithms under these cri-
teria have been proposed for a number of
kinetic problems, including convex hull of
a point set in the plane and closest pair,
no optimal algorithms are known for a
wide range of other problems, for exam-
ple, convex hulls in R3, triangulation of
points in R2, range searching, etc. In such
cases, one would like to obtain a trade-off
between different complexity measures. A
natural trade-off would be between the
compactness and the efficiency of a KDS.
This is similar to the trade-off between
the size and the query time of a static
data structure—a query can be answered
more efficiently by allowing more space
[Agarwal and Erickson 1999; Matoušek
1994]. A similar issue is how to improve
the efficiency of a kinetic algorithm by
maintaining a geometric structure implic-
itly. For example, we know of techniques
for maintaining the triangulation of a
point set in the plane implicitly by struc-
tures that process only quadratic num-
ber of events, but no such bounds are
known if one is required to maintain a
triangulation explicitly [Agarwal et al.
2000].

Another possible trade-off is between
efficiency and accuracy. How much effi-
ciency can be gained by maintaining a ge-
ometric structure approximately? For ex-
ample, it is known that the diameter of
a set S of points (the maximum distance
between a pair of points in S) moving in
the plane can change quadratically many
times [Agarwal et al. 1997], but recently it
was shown [Agarwal and Har-Peled 2001]
that if we maintain the diameter approxi-
mately, the number of events only depends
on the approximation factor (and is in-
dependent of the number of points). Al-
though some preliminary work has been
done on trading off efficiency with accu-
racy, a more general theory is needed for
approximating motion.

(3) Flexible Scheduling. The current
KDS implementations maintain a global
priority queue that stores the future
events at which the structure may need
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to be updated. The events are processed
in the sorted temporal order. The correct-
ness of these methods relies on the as-
sumption that all the events have been
processed in this order. Under algebraic
motion, an event is typically a root of a
polynomial of fixed degree, and thus we
have to compute the roots of a polyno-
mial. If we use floating-point arithmetic or
numerical methods to estimate the roots,
we compute them only approximately and
cannot ensure that the events have been
processed in the sorted order. On the other
hand, using exact arithmetic and alge-
braic methods (such as Sturm sequences)
for computing or isolating roots is quite
expensive. Another source of difficulty in
processing events in sorted order is degen-
eracies in the input—a degeneracy causes
multiple events to occur simultaneously.
Little attention has been paid so far to
these problems.

In many physical simulations, the mo-
tion law of the objects is specified by an or-
dinary or partial differential equation. In
such contexts, polynomial trajectories can
be at best short-term approximations of
the actual trajectories, useful for conserva-
tive estimates of certificate failure times.
The correctness of the approximation
needs to be certified and tracked as well.

It is desirable to develop a framework
where event-based scheduling can be in-
termixed with fixed-time-sampling. The
latter can be used whenever explicit mo-
tion prediction, apart from full integration
of the equations of motion, is difficult. The
current KDS repair mechanism strongly
depends on the assumption that it is in-
voked to repair a single certificate failure.
In a time-step-based scenario, multiple
certificates may fail; we need techniques
that can repair a structure after multiple
certificate failures.

(4) Canonical vs. Noncanonical Struc-
tures. The complexity measures men-
tioned earlier are more suitable for
maintaining canonical geometric struc-
tures, those that are uniquely defined by
the position of the data, for example, con-
vex hull, closest pair, and Delaunay tri-
angulation. In these cases, the notion of

external events (those that change the
combinatorial structure of the attribute of
interest) is well defined and is indepen-
dent of the algorithm used to maintain
the structure. On the other hand, suppose
we want to maintain a triangulation of a
moving point set. Since the triangulation
of a point set is not unique, the external
events depend on the triangulation being
maintained, and thus depend on the algo-
rithm. This makes it hard to analyze the
efficiency of a kinetic triangulation algo-
rithm. Most of the current approaches for
maintaining noncanonical structures arti-
ficially impose canonicality and maintain
the resulting canonical structure. But this
typically increases the number of events.
Another drawback of imposing a canon-
icality condition is that it might make
the structure global, which in turn would
make the task of designing a distributed
algorithm considerably harder.

In general, current techniques are too
weak to analyze the performance of non-
canonical structures and better tech-
niques are needed. In Agarwal et al.
[2000], Kirkpatrick et al. [2000], and
Kirkpatrick and Speckmann [2000, 2002],
we made some progress in this direction,
but these techniques are very problem
specific. A better model for analyzing the
lower bounds is needed. Some of the analy-
sis techniques developed for analyzing the
on-line algorithms could prove useful.

(5) Decentralization. When we want to
simulate motion over a large scale, for ex-
ample, the flow patterns of cars in a city,
mobile agents in an ad-hoc network, or a
chemical reaction among several macro-
molecules, the motion computation may
have to be distributed over several proces-
sors/machines. Furthermore, if we are con-
firming certificates from sensor data, the
sensors themselves may be geographically
distributed over a large area and may be
also constrained by communication band-
width and power requirements. In such
settings, the normal centralized way of im-
plementing KDSs cannot be used, as the
communication, processing, and power ca-
pabilities of the central node will severely
limit the scalability of the system. Most of
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the existing approaches assume the exis-
tence of a central event queue that keeps
track of all the changes. In a distributed
environment, reasoning about the state of
the system and tracking the attributes of
interest must take place in a distributed
manner. Each processing node will be re-
sponsible for only some of the mobile data
and will communicate information with
other nodes as necessary. How to develop
such algorithms even for simple problems
remains a challenging issue, despite a
few recent attempts in this direction [Gao
et al. 2001].

(6) The Number of Combinatorial
Changes. Although optimal or near-
optimal bounds are known on the number
of changes in the basic geometric struc-
tures such as convex hull, closest pair,
diameter, and width of a point set, such
bounds have remained elusive on many
other structures, including Delaunay
triangulation, minimum spanning tree,
and alpha shapes. Moreover, most of the
work has focused on bounding the num-
ber of changes in the worst case, which
rarely occurs in practice. There has been
some work on bounding the number of
changes when the trajectory of each point
is randomly chosen from a reasonable dis-
tribution. It would be useful to study the
number of changes under more realistic
assumptions on motion, for example, when
the motion of the points is correlated, or to
develop a model in which the bounds are
proved as a function of the complexity of
the motion of objects.

3. MESH GENERATION

Many physical and engineering problems
are modeled by defining a set of partial
differential equations over a continuous
domain. However, it is usually infeasible
to perform computer simulations over a
continuous space. Therefore, the domain
is discretized by decomposing its interior
into a mesh of simple and well-shaped el-
ements such as boxes or simplices, the dif-
ferential equations are approximated over
the discretized domain using finite differ-
ence, element, or volume techniques, and

then solved numerically. The error of a so-
lution is estimated, and if necessary, the
mesh is refined and the numerical simula-
tion repeated. Not all meshes are equally
good; the error introduced by discretiza-
tion depends on the size and shape of the
elements of the mesh, and the computa-
tional complexity of the simulation de-
pends on the number of elements in the
mesh and their overall quality. This has
led to vast literature on mesh generation;
see Bern and Plassmann [2000] for a re-
cent survey.

In many applications, ranging from
weather modeling to seismic analysis,
from protein folding to heart modeling, the
domain evolves with time, which raises
the problem of mesh generation over time-
varying domains. Depending on the appli-
cation, either the mesh is updated dynam-
ically over time or time is considered as
another dimension, and the mesh is gen-
erated over the space-time domain.

3.1. Dynamic Meshes

To maintain the mesh, we must trace
changes of the shape and repair the mesh
at places where it becomes inadequate. We
see at least three types of changes:

(i) Changes of shape, which can usually
be accommodated by moving mesh
vertices (and thus implicitly cells).

(ii) Changes of curvature, which cause
distortions of the homeomorphism
between the mesh and the underlying
domain. In the case of triangulations,
we can repair such distortions by lo-
cally inserting or deleting simplices.

(iii) Changes of topology, which require
a local reorganization of the mesh
connectivity.

In all cases, we require good mechanisms
to predict or detect when these changes
happen, as we already discussed for ki-
netic certificates in Section 2.

Algorithms that maintain meshes un-
der all three types of changes are
rare [Cheng et al. 2001], and they are
sensitive to how quickly changes can
happen. This gives rise to a hierarchy
of motions or deformations, ordered by
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difficulty in maintaining a mesh algorith-
mically. A deformation may be best un-
derstood by considering the trajectory of
the domain through a higher-dimensional
space-time. For example, a deforming
2-dimensional surface in R3 sweeps out a
3-dimensional manifold in R4. The speed
of the deformation is then captured by the
slope of the manifold in the direction of
time.

3.2. Meshing Space-Time Domains

A possible alternative to dynamic mesh-
ing is meshing directly in space-time,
which trades the dynamic nature of the
problem for an extra dimension. Space-
time meshing algorithms are becoming
more desirable now as numerical algo-
rithms for space-time problems are being
developed.

Space-time discontinuous Galerkin
methods are a relatively new family
of techniques for solving systems of
nonlinear hyperbolic partial differential
equations [Cockburn et al. 2000; Lowrie
et al. 1998; Richter 1994; Yin. et al.
2000]. These methods rely on the do-
main of influence for dynamic data. The
domain of influence for a point p in the
space-time domain is a cone with apex
p; the cone specifies points in space-time
whose relevant physical parameters
(temperature, pressure, etc.) depend on
the corresponding parameters of p. A
finite-element mesh satisfies the so-called
cone constraint if the domain of influence
of any point on any interior mesh face is
disjoint from that face; intuitively, this
implies that information flows in only one
direction between any two adjacent ele-
ments. If the cone constraint is satisfied,
space-time discontinuous Galerkin meth-
ods can compute a numerical solution one
element at a time, avoiding the need to
solve a large system of equations.

Most space-time meshing algorithms
divide time into fixed-length intervals
and construct a mesh within each
layer [Lowrie et al. 1998; Üngör et al.
2002]. The length of the global time step
is imposed by the smallest element in
the underlying space mesh; this increases

both the size of the mesh and the numer-
ical error in the computed solution. The
only exception to date is the “Tent Pitcher”
algorithm of Üngör and Sheffer [2002]
and its recent extension by Erickson
et al. [2002]. These algorithms construct
space-time meshes using an advancing
front method. At each step, one node on
the front is advanced through time to
create a new space-time element. The
time step taken by each node depends on
the size and quality of the nearby spatial
elements. This advancing front strategy
is necessary for problems in which the
parameters of the cone constraint change
over time and must be computed as part
of the numerical solution. Despite this
recent progress, the problem of meshing
over general space-time domains remains
largely open.

(i) Unlike fixed time-step methods, ad-
vancing front methods require a con-
stant underlying space mesh; the
fixed discretization of time has been
traded for a fixed discretization of
space. Methods to coarsen, refine, and
otherwise locally remesh the advanc-
ing front would be useful not only
to avoid numerical error but also to
make the meshing process itself more
efficient.

(ii) In many problems, the boundary
of the simulation domain changes
continuously over time. Tracking
moving boundaries requires new tech-
niques to move nodes of a space mesh
continuously through space-time.

(iii) In problems involving material flow,
cone constraints can be skewed or
anisotropic, but current techniques
assume uniform cone constraints.
This brings in the issue of hierarchi-
cally modeling increasingly complex
motion, as in Section 2.

(iv) Finally, further work is required to
determine useful quality measures
for space-time meshes and to con-
struct space-time meshes with guar-
anteed size and quality bounds. This
is in stark contrast to the traditional
setting, where appropriate measures
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of quality and algorithms to compute
high-quality meshes are well known
[Bern and Plassmann 2000].

4. PHYSICAL SIMULATION

The applications of physical simulation
can be divided into two broad categories.
In one category are applications requir-
ing physical simulation to reason about
the real world for engineering, verifi-
cation, and prediction. Here, accuracy
is key, and many of the challenges in-
volve the development of accurate mod-
els. Many of these, such as finite-element
or boundary-element models, require the
use of meshing techniques as discussed
in Section 3. The second category of ap-
plications require physical simulation for
producing “plausible” motion; these appli-
cations include animation, games, content
creation, and some kinds of education and
training. Here, since the constraints on
accuracy are more lax, modeling is less
of a problem, and efforts have focused on
other issues such as unstructured interac-
tion and real-time speeds. Below are four
challenges related to motion in physical
simulation; the first three are relevant to
both categories of applications, and the fi-
nal one is relevant to the nonengineering
applications.

One grand challenge of physical simu-
lation is the combination of different state
representations to solve complex, hetero-
geneous problems. Consider the different
ways motion is represented through ve-
locities. The velocities of all points on a
rigid body are simultaneously described
by the linear velocity of a single point on
the body and an angular velocity. On the
other hand, the velocity of a deformable
body is often represented by the linear
velocity of a number of node points at-
tached to the body. Finally, the velocity
of fluid might be represented by linear
velocities at lattice points fixed in space.
How are these representations to be har-
monized when studying, for example, the
turbulence induced by a rigid body mov-
ing through a fluid, or the wrinkling of
the clothes on an articulated human fig-
ure? Some progress has been made [Baraff

and Witkin 1998; van den Doel et al. 2001;
Meyer et al. 2001], but many problems re-
main unresolved in modeling interactions
and constraints between objects with dif-
ferent underlying state and motion repre-
sentations.

A second challenge is to design simula-
tion systems than can effectively choose
appropriate motion models and algo-
rithms for the given situation. Perhaps
a rigid body model is a reasonable ap-
proximation, or maybe a linear or even
nonlinear deformable model is needed. In-
ertial effects may or may not be negligi-
ble. There are a variety of ways to model
friction with different properties and com-
putational costs. Even after the model
has been chosen, there might be alterna-
tive algorithms. For example, there are at
least three families of methods for model-
ing rigid body contact (analytic/LCP for-
mulations [Lotstedt 1981; Baraff 1989],
penalty methods which are popular in
haptics [Zilles and Salisbury 1995], and
impulse-based methods [Mirtich 1996]),
each with different strengths and weak-
nesses. By and large, today’s simulation
systems use a single model and a sin-
gle algorithm for a given class of dy-
namic objects. A better approach would
be to choose among the models and algo-
rithms, depending on dynamic objects. To
do this, a system must know the impor-
tant results of the simulation, the allow-
able tolerances, the sources of error in each
algorithm, the bounds on these errors, and
the error propagation over time.

A third challenge is to parallelize sim-
ulation algorithms so that they can be
scaled to bigger problems by adding more
computational units. This is already pos-
sible for certain types of simulations in-
volving finite element methods and com-
putational fluid dynamics. It is harder for
more unstructured systems such as those
involving rigid bodies. Often, such systems
can not be statically partitioned into in-
dependent subsystems, and furthermore
the parts of the system that affect an-
other part vary over time. A partitioning
among CPUs needs to be a dynamic one.
Better bounds on the motion of objects
over time could make maintaining this
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partition easier. Also to be considered are
load balancing issues: equally sized parti-
tions are most useful.

A final challenge in physical simula-
tion is to give better control to the user.
Particularly when used for nonengineer-
ing applications, simulation is praised for
producing complex motion while cursed
for being an unwieldy, unpredictable tool
[Laszlo et al. 2000]. Despite living in a
physical world, humans are poor at de-
signing simulations to give them “what
they want”; in many cases, the desired
outcomes are not even physically possi-
ble. Despite a lot of work in this area,
users still need better handles and hooks
into the physical simulation process in or-
der to steer its course. Often the user’s
desires are expressible in terms of mo-
tion constraints. Representations for these
constraints are needed that are not only
intuitive to humans but that also lead to
tractable computer solutions. Also needed
are algorithms that can let go of the
true physics just enough to meet the con-
straints.

5. BIOLOGY

Molecules move and deform. Chemical
processes essential to life critically depend
on the ability of biomolecules to adopt dif-
ferent shapes over time. If we could re-
alistically describe molecular motions, we
would greatly improve our understand-
ing of these temporal processes, including
protein folding and molecular interactions
(such as the assembly of protein com-
plexes, protein-ligand docking, etc.), rep-
resenting some of the most important un-
solved problems in biology. Simulating the
motions of molecules poses its own chal-
lenges, beyond those covered in earlier
sections.

5.1. Molecular Dynamics Simulations

At the atomic level, the physical prin-
ciples underlying molecular motions are
fairly well understood: ligands and pro-
teins have primarily torsional degrees of
freedom, and the forces on an individual
atom can be expressed as sums of well-

known potentials [Leach 1996]. Yet molec-
ular dynamics simulations of a molecular
system are still far too expensive computa-
tionally to allow us to follow a process over
its complete time period. For example, a
protein folds within a few seconds, while
the longest published molecular dynam-
ics simulation of a protein covers one
microsecond. The reason that accurate
molecular dynamics simulations remain
a major challenge in computational biol-
ogy is that they involve thousands of de-
grees of freedom in the molecule of inter-
est, require many evaluations of potential
energy functions that can be expensive to
compute, and in addition need to take in
account the solvent environment. In or-
der to make progress, we must develop
novel ways to represent deforming shapes
and track their evolution over time, find
techniques for describing the physics in
terms of higher-level units than individual
atoms, and use efficient approximations
whenever justified to do so. More specif-
ically, we need the following.

(1) Implicit Solvent Potential Energy
Functions. Molecular dynamics simula-
tions that include a large number of wa-
ter molecules around the solute remain
the state of the art in this field. They
are, however, inefficient, since a large frac-
tion of the computing time is spent calcu-
lating a detailed trajectory of the solvent
molecules, even though it is primarily the
solute behavior that is of interest. Several
semi-analytical implicit treatments of sol-
vent have been proposed. They all rely on
an energy term that is related to the sol-
vent exposed surface area of each atom
of the solute. Inclusion of such terms in
a molecular dynamics simulation requires
the calculation of accurate surface areas,
as well as their analytical derivatives with
respect to atomic position. Fast analyti-
cal methods are needed for these calcula-
tions [Bryant et al. 2002].

(2) Efficient Updating Procedures.
Molecular dynamics simulations are
based on solving the Newton equations
of motion for all atoms of the system
considered. These equations are solved
numerically, using very short time steps
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of the order of a fraction of a femtosecond.
Each step requires the evaluation of the
total energy function of the system, as
well as its derivatives with respect to
atomic position. For standard energy
terms, such as Lennard–Jones and elec-
trostatics interactions, only a fraction of
all pairs of atoms need be considered. A
crucial aspect for fast molecular dynamics
simulation is to have access to fast algo-
rithms for building and updating these
interacting pairs of atoms.

(3) Hierarchical Representation of Pro-
teins. Very long simulation of molecular
dynamics require approximations. One
approach is to simplify the representation
of the molecule of interest: simplified
models of proteins have proved both popu-
lar and effective until the present time. A
significant weakness of such models, how-
ever, is their inability to deal with topo-
logical features of the molecule in a mean-
ingful way. We need new methods that
build simplified models with geometrical
persistence [Edelsbrunner et al. 2000].

5.2. Motion-Planning and Protein Folding

Molecular dynamics simulations follow
molecular motions by solving a determin-
istic or stochastic system of equations.
They provide very detailed analysis of
short and usually small amplitude mo-
tions, with reasonable agreement with ex-
perimental data coming from structural
biology. While it is expected that improve-
ments of the computer technology and in
the algorithms applied for solving these
equations will increase the time span cov-
ered by these simulations, time scales
on the order of milliseconds and seconds
are still out of reach. As we already re-
marked, unfortunately these are the time
scales of most interest for many biolog-
ical processes. Different approaches spe-
cific to these problems need to be explored.
See Dill et al. [1995], Levitt et al. [1997],
and Onuchic et al. [1997] for a review of
known techniques on protein folding.

There are large and ongoing research ef-
forts whose goal is to determine the na-
tive folds of proteins (the protein struc-
ture prediction problem). Most approaches

proceed in two steps. First, a large collec-
tion of possible conformations (or decoys)
for the protein of interest is built. Sec-
ond, these conformations are screened us-
ing potential energy functions and the best
models define the predicted structures for
the protein. In these procedures, the fo-
cus is set on thermodynamics (definition of
low energy states) and not on the kinetics
of the protein folding process (i.e., how the
protein folds to its native conformation). A
better understanding of the latter should
not only facilitate protein structure pre-
diction but also provide insights on how
proteins function. Motion planning and
more specifically probabilistic roadmap
methods provide one approach to solving
this problem [Amato et al. 2002; Song and
Amato 2002; Apaydin et al. 2002]. Applica-
tion of such techniques to the protein fold-
ing problem requires the following:

(1) Falsifiability Studies. Motion
planning usually starts by sampling
the moving object’s configuration space
(C-space), and retaining those confor-
mations that satisfy certain feasibility
requirements. Roadmap nodes are then
connected by finding the path of minimum
energy between the starting point and
the goal. Application of such a strategy
to the protein folding problem is not in-
tuitive and should be extensively tested.
Interestingly, recent experimental results
suggest that protein folding mechanisms
and landscapes are largely determined
by the topology of the native state and
are relatively insensitive to details of the
interatomic interactions [Alm and Baker
1999]. This dependence on low-resolution
structural features suggest that it should
be possible to describe the physics of the
folding process using relatively low resolu-
tion models. It remains that initial studies
should focus on proteins for which kinetic
data are available, as well as on proteins
whose dynamics have been described.

(2) Algorithmic Developments. In the
case of protein folding, the C-space is
large, since the protein has a very large
number of degrees of freedom. Fast al-
gorithms for extensive sampling of the
C-space of proteins must be developed.
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The protein folds based on geometric
constraints (i.e., no self-collision) but
also energetic constraints. Realistic en-
ergy functions are therefore needed, such
as those used for molecular dynamics
simulations—a point already mentioned.
Algorithms are also needed to select
roadmap nodes from possible configura-
tions of the protein in its C-space. Such
selection can be based on energetic and/or
geometric criteria [Apaydin et al. 2001,
2002]. While several algorithms have been
developed for generating the path of mini-
mal energy among road nodes in robotics,
they have to be adapted to the specific case
of protein folding, in order to cope with a
large number of nodes.

6. COMPUTER VISION

6.1. Shape and Motion

Vision processes data that represents mo-
tion in the physical world. Sensor noise,
calibration, and uncertainty are novel is-
sues that have to be addressed. Motion
analysis in computer vision can be di-
vided into scene-based and object-based
approaches.

Scene-based analysis based on generic,
model-free methods has been studied
since the 1980s and has led to successful
systems for camera pose estimation and
image stabilization. This method usually
exploits either rigid-body scene assump-
tions or optic flow to estimate gross mo-
tion characteristics. A common approach
in this area is to extract structure from
motion, assuming a single moving cam-
era in a static scene [Longuet-Higgins
1981; Hartley and Zisserman 2000]. While
challenges remain in these areas, com-
mercial codes are starting to become
available to solve such problems (e.g.,
http://www.2d3.com/).

Most of the deep motion-related re-
search problems in vision arise when the
scene must be interpreted in terms of
objects undergoing independent motion.
Consequently, doing motion analysis suc-
cessfully for computer vision often relies
on having sufficiently expressive shape
(or, more generally, appearance) models to

describe the objects being viewed. Certain
classes of shapes have been successfully
modeled. These include rigid, near planar
shapes, and those whose contours or in-
tensities can be modeled using linear com-
binations of principal components [Black
and Yacoob 1997]. There have also been
successes with 3D jointed structures as
well as 2.5D “cardboard cutout” repre-
sentations [Black and Jepson 1998; Torr
et al. 2001]. However, there remain large
classes of objects that we do not know how
to model well, including pragmatically im-
portant ones such as people wearing loose
clothing. Much of the difficulty in object
tracking comes as much from the chal-
lenge of devising a suitable appearance
model as from the motion analysis itself.

In the past, most of the shape models
used have been hand-crafted, parame-
terized models [DeCarlo and Metaxas
2000] and the methods developed for
motion analysis have been deterministic
in nature (e.g., physics-based methods).
Recently, statistical methods have been
widely used to overcome the obvious
limitations of hand-crafted models, to
generalize the representation of motion
in terms of parameters that follow dis-
tributions, and to improve the coupling
between motion estimation and motion
recognition [Isard and Blake 1998; Blake
et al. 1999]. Such methods promise new
capabilities for segmentation, param-
eterized shape representation, motion
estimation and motion recognition.

Within this new class of statistical
methods, the following open research
problems need to be addressed.

6.2. Segmentation, Grouping
and Initialization

While there has been a significant im-
provement in recent years in our abil-
ity to track objects with complex appear-
ance and motion models, the problem of
initialization—the matching of an object
model to this first frame of a sequence
as a precursor to tracking—has lagged
behind. Initialization is typically treated
as a separate algorithm distinct from
the subsequent tracking, and often relies
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on generic segmentation techniques. Fur-
thermore, initialization is often attempted
using a single image whereas it might be
much easier to do given several frames; it
is clear that we need a better understand-
ing of how to merge the problems of initial-
ization and tracking to arrive at a contin-
uum between them. Initialization is also
clearly related to grouping methods; for
example, initializing a jointed-limb model
can be viewed as the task of grouping the
individually moving limbs into a coherent
whole. No good algorithms are known for
incorporating this grouping into the ini-
tialization/tracking process, perhaps in or-
der to select the form of a shape model ap-
propriate to an unknown object. Finally,
the problem of coupling shape models with
statistical methods in an effort to au-
tomate the estimation of the priors for
improved segmentation and model initial-
ization has only recently begun to be stud-
ied [Chen and Metaxas 2000].

6.3. Statistics and Learning

As in other fields, such as speech recog-
nition, the computer-vision community is
increasingly realizing the importance of
learning-based statistical models for de-
veloping robust methods. Although there
are learning-based methods for estimat-
ing low-level motion parameters, basic re-
search needs to be done on coupling the
low-level motion parameters estimated by
the above methods with the semantic in-
terpretation of these parameters. An ex-
ample of such needed integration is the
problem of Gesture and Sign Language
Recognition [Vogler and Metaxas 2000].

While motion analysis has so far been
studied under the assumption of fairly
well lit objects that follow the optical
flow assumption, very little research has
been done on motion analysis under vary-
ing lighting conditions. This is clearly a
very important problem for robust motion
tracking.

6.4. Multiple Scales

Objects in the world are often naturally
represented at multiple scales. This is
true of object shape, which may lend it-

self to hierarchical description; object tex-
ture: for example, a piece of paper may be
well represented as having uniform tex-
ture from a distance and as containing dis-
crete letters close up; and object motion,
which is typically well approximated by a
simple linear process at short timescales,
while these linear motions compose over
longer timescales to form complex behav-
iors which may be best described using
grammars over discrete spaces. A few al-
gorithms for dealing with multiple scales
for shape exist [Lindeberg 1994], but no
good overall theory for shape or motion has
emerged. In particular, we do not yet fully
understand the conditional dependencies,
which relate the different scales. The
study of principled statistical algorithms
to deal correctly with inference of motion
over multiple scales is also in its infancy.

6.5. Summary

In some ways, motion analysis is one of
the success stories of recent computer vi-
sion research. Around ten years ago, mem-
ory sizes and computing speeds became
adequate to deal with lengthy image se-
quences, and since then tracking has made
great strides: simple “blob” trackers that
follow the gross motion of nonoverlap-
ping objects against relatively static back-
grounds are now a standard component
of robust systems, which can run unat-
tended for months. As soon as the complex-
ity of the problem is increased in any di-
mension, however, current solutions break
down, so there is plenty of research left to
do, from following the motion of complex
nonrigid objects to interpreting and sum-
marizing extended behaviors, to coupling
vision-based motion trackers with other
modalities, such as speech, for improved
activity recognitions.

7. ROBOTICS

As in the previous section, robotics must
deal with motion in the “real” world—
and not just with idealized models of such
motion in a virtual world. As a conse-
quence, besides the usual criteria such
as efficiency and simplicity, the perfor-
mance of motion algorithms in robotics
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must be judged based on how accurately
they model the real world (for a class of
tasks) and how robust they are to the un-
certainties.

7.1. Modeling Motion

Some of the key difficulties of modeling
motion in robotics include model selection
and parameter estimation. Despite exten-
sive work in mechanics over the last few
centuries, there are numerous everyday
objects that robots need to reason about
and manipulate, which are not easy to
model using known laws. The fundamen-
tal problem lies at the fact that the pa-
rameters needed for the models are usu-
ally unknown and difficult to acquire. For
instance, our ability to model the motion
of an object rolling on the ground is lim-
ited by the difficulty of knowing the sur-
face friction at the interface and even the
inertial properties [Kry and Pai 2002].
Or, consider the problem of modeling a
deformable object, say a human organ like
the liver, in surgical robotics [Debunne
et al. 2001; Brown et al. 2001]. How is the
deformation of the liver to be modeled? In
order to tackle these problems, one has to
address the following issues:

(i) Algorithms for estimating parameters
of motion models from observations
[Lang et al. 2002; Richmond and Pai
2000]. These can often lead to ill-posed
inverse problems, requiring sophisti-
cated numerical techniques.

(ii) Techniques for representing, prop-
agating, and reasoning about un-
certainty in the motion. Kalman
and particle filters are two exam-
ples of representing and propagating
the uncertainties, but we also need
algorithms for incorporating these
uncertainties in collision detection
and impact problems [Sorenson 1985;
Arulampalam et al. 2002].

(iii) New empirical models. For many com-
plex problems, empirical models are
the only option to model motion. For
example, in order to model the de-
formation of nonuniform elastic ob-
jects, rather than reconstructing the

internal structure of the object so that
known models of elasticity can be ap-
plied, it may be preferable to construct
an empirical model of the deformation
behavior of the object. Essentially,
all friction and impact laws used in
practice are empirical, and they are
applicable only for a small class of
tasks [Mason 2001].

Many of the difficulties in modeling mo-
tion are because of the the constraints
that the motion must satisfy. The physi-
cal laws governing the motion are obvious
constraints. These laws are typically con-
tinuous and are modeled using differential
equations [Mason 2001]. However, the mo-
tion algorithms discretize them. Despite
the recent progress in discretization of
differential equations, many issues re-
main unsolved, including the ability to ex-
tend them to deformable shapes. Whether
the kinetic data structures, discussed in
Section 2, can be used to discretize dif-
ferential equations remains an interest-
ing open question. Contact constraints
are another type of constraints that are
hard to model [Pai et al. 2001]. For in-
stance, simulating the roll-slide motion
during smooth contact is a challenge to
both collision-detection algorithms (espe-
cially those relying on polyhedral approx-
imations and bounding volumes) and to
traditional simulation algorithms (espe-
cially those relying on constraint stabi-
lization). How to represent local defor-
mations at contact is another challenging
problem—localized (“point”) contacts pro-
duce very large stresses, which locally
deform apparently rigid objects and can
produce important elastic effects such as
stick-slip oscillations.

7.2. Collision Detection

A central problem in robotics is detect-
ing collision between many moving ob-
jects. It has been extensively studied in
both robotics and computational geome-
try [Lin and Gottschalk 1998]. The work
in computational geometry has focused
on theoretical approaches, which are, at
times, complex to implement, while the
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work in robotics has lacked a general
approach that works well in all cases.
Commonly used in practice are methods
that track the closest pair of features be-
tween two moving objects and update the
closest pair by a local computation after
each time step [Mirtich 1998; Lin and
Gottschalk 1998]; an underlying assump-
tion is that, if the time step is chosen
sufficiently small, then the closest pair
can be updated incrementally and effi-
ciently. Feature trackers work well for
simple convex objects, or combinations of
a small number of such. Hierarchical rep-
resentations of objects have been incor-
porated to this approach to handle more
complex objects (see, e.g., [Larson et al.
2000] and references therein), and ki-
netic data structures (Section 2) have been
used to alleviate some of the problems of
the fixed-time-sampling approach. Alter-
natively, hierarchies of simple bounding
volumes (spheres or boxes) have been used
to enclose shapes; these hierarchies are
refined only to the coarsest level necessary
to establish that the two objects do not
intersect.

The above approaches, however, are not
suitable for detecting collision between
many moving objects, especially if each of
them is moving with different speed, be-
cause one has to perform collision testing
for every pair of objects. Instead a global
approach is needed. Recently, a few global
approaches are proposed for detecting col-
lision between many moving polygons in
the plane, which maintain a tiling of the
common exterior of the polygons into flex-
ible cells, so that the polygons are known
to be disjoint until one of the cells self-
collides [Agarwal et al. 2000; Kirkpatrick
et al. 2000; Kirkpatrick and Speckmann
2002]. They maintain additional informa-
tion that makes it easy to predict when a
cell self-collides, and to update the tiling
when that occurs. Although this approach
looks promising in the plane, there are
many stumbling blocks in extending it to
3-space. Even less is known on detecting
collision between deformable objects or for
detecting self-intersection in a deformable
object [Bridson et al. 2002; Guibas et al.
2002].

A different problem is how to respond
when a collision occurs [Mirtich 2000]. For
example, in virtual-reality applications
such as computer games, digital battle-
fields, haptics interfaces, etc., it is critical
that reaction to collision detection is close
to reality—Should an object penetrate the
other? Should one of the objects bounce
back? Should the objects deform or break?
This raises several interesting questions
that combine geometry with physical mod-
els of the objects involved.

7.3. Planning Motion

A typical motion-planning problem asks
for computing a collision-free motion be-
tween two given placements of a given
robot in a given environment. In its sim-
plest form, one assumes that the environ-
ment is fully known and that there are
no constraints on the motion of the robot
except that it cannot collide an obstacle.
The problem is typically solved in the con-
figuration space, in which each placement
(or configuration) of the robot is mapped
as a point; see Latombe [1991]. The free
configuration space F is the subset of the
configuration space at which the robot
does not intersect any obstacle. The robot
can move from an initial configuration to
a final configuration without intersecting
an obstacle if these two configurations
lie in the same connected component of
F . Planning a collision-free path thus
reduces to connectivity and other topo-
logical questions in F . Numerous gen-
eral techniques and techniques for low-
dimensional configuration spaces have
been developed [Barraquand and Latombe
1991; Halperin et al. 1997]. This has also
led to several interesting topological ques-
tions on configuration spaces, which are
typically represented as semi-algebraic
sets (finite Boolean combinations of so-
lution sets of polynomial equalities and
inequalities).

The dimension of configuration space
depends on the degrees of freedom of the
robot, and it can be quite high. Comput-
ing high-dimensional configuration spaces
exactly is impractical [Barraquand and
Latombe 1991]. Therefore, techniques to
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compute an approximate representation
of F are needed. Much of the difficulty
in approximating F is in understanding
the topology and in simplifying the topol-
ogy of F . Recently, Monte Carlo algo-
rithms have been developed for represent-
ing F by 1-dimensional networks, called
probabilistic road maps (PRMs) [Kavraki
et al. 1995, 1996]. Intuitively, this net-
work is an approximate representation of
the road map, a 1-dimensional network
that captures the connectivity information
of F . These methods sample points in F
and connect them by an edge if they can
be connected by a simple path inside F .
Despite several heuristics to sample well
the points in F , better sampling strate-
gies are needed to handle narrow corri-
dors and other difficult areas in F , so
that the connectivity of F is preserved.
Variants of such methods have already
been described in Section 5. PRMs can
quickly find a simple collision-free path
between initial and final configurations
in many situations. But there is no ab-
solute guarantee that they will do so—in
fact, very few general purpose techniques
are known for establishing that paths do
not exist.

In the above discussion, we assumed
that there were no constraints on the
motion of the robots, which in practice
is not the case. Various nonholonomic
constraints such as bound on the maxi-
mum velocity or acceleration may exist on
the moving robot. Planning a collision-free
in presence of these constraints is con-
siderable harder, and relatively little is
known except various ad-hoc approaches.
Better techniques that are practical as
well as theoretically sound are needed for
nonholonomic motion planning.

In some applications, even more chal-
lenging problems arise. If the obstacles
are also moving, the free configuration
space has to be updated dynamically. Also,
flexible objects such as elastic bands, rope,
or cloth cannot be properly represented
with a finite number of degrees of free-
dom [Baraff and Witkin 1998; Lamiraux
and Kavraki 2001; Meyer et al. 2001]. How
one can represent configuration spaces of
such objects is a big challenge.

8. SPATIO-TEMPORAL DATABASES

Efficient indexing schemes that support
various queries are central to any large
database system. Most existing database
systems assume that the data is constant
unless it is explicitly modified. For exam-
ple, if the value of the age field is set
to 40 years, then this age is assumed to
hold (i.e., 40 years is returned in response
to a query) until explicitly updated. Such
systems are not suitable for representing,
storing, and querying continuously mov-
ing or varying objects; either the database
has to be continuously updated or a query
output will be obsolete. Motivated by ap-
plications in digital battlefields, air-traffic
control, and mobile communication sys-
tems, methods for indexing dynamic at-
tributes are needed, which guarantee ef-
ficient access to moving objects. A basic
scenario is one in which the database sys-
tem receives trajectories for a large pop-
ulation of objects capable of continuous
movement; new objects may arrive, exist-
ing objects may leave, and that the posi-
tions of existing objects may be updated
dynamically. The objects, which can as-
sume to have rigid shapes, may be repre-
sented as points, for example, people with
mobile phones, people in Internet-worked
cars, airplanes, etc. The movement of the
objects may be constrained by stationary
or moving objects, the movement of the
objects may be confined to networks (e.g.,
cars confined to a road network), and the
motion of objects may be highly correlated.
The goal is to answer various queries
based on the locations, trajectories, and
topology, and to explore patterns in motion
of objects. Since the data is quite large and
resides on disk, one cannot scan the whole
data to answer a query.

Instead of continuously updating the
position of a moving object, a better ap-
proach is to represent the position as a
function f (t) of time, so that changes
in object position do not require any ex-
plicit change in the database system. With
this representation, the database needs
to be updated only when the function
f (t) changes. Recently, there has been
some work on extending the capabilities of
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existing database systems to handle
moving-object databases (MOD); see, for
example, Sistla and Wolfson [1995], Sistla
et al. [1997], and Chomicki and Revesz
[1999].

Methods such as KDS, developed for
simulating some structures/phenomena
over time, are not always suitable for an-
swering queries on the database of moving
objects. The queries might relate either to
the current configuration of objects or to
a configuration in the future—in the lat-
ter case, we are asking to predict the be-
havior based on the current information.
In either case, tracking the current config-
uration of the objects would be unneces-
sary and expensive. Another approach to
handle motion is to regard the time as an-
other spatial axis and reduce the problem
to a static problem in one higher dimen-
sion. For example, a set of points moving in
the plane can be regarded as lines in R3.
This approach has the advantage that the
data structure need not be updated unless
the trajectory of an object changes. How-
ever, it suffers from a number of problems.
First, the approach expects the trajectory
of the points to be known in advance. Sec-
ond, it reduces the problem to one higher
dimension, which makes the algorithms
slower.

Here are a few different types of queries
that one may want to answer on moving
objects.

(1) Location-Based Queries. These
queries include range and proximity
queries [Šaltenis et al. 2000; Wolfson
et al. 1999]. For example, given a rect-
angle R and a time t, report all objects
that will be inside R at time t; given a
rectangle R and a time interval [t1, t2],
report all objects that will pass through
R in the time interval [t1, t2]; given a
point p and a time interval [t1, t2], report
the objects that would be nearest to p
in that time interval. Despite a flurry
of papers on indexing moving objects
for answering location-based queries,
the problem remains largely open. The
theoretical results, based on partition
trees and KDSs, are too complex to be
practical. The practical indexing schemes

are based on quad-trees, R-trees, and
their variants. They do not always work
well, and their performance deteriorates
with time and the data size. In order to
improve the performance of an indexing
scheme, some of the researchers have
introduced the notion of horizon that gives
the duration for which the current index
performs well. They suggest to rebuild the
index periodically or to adjust it when the
trajectories are updated (see, e.g., Tayeb
et al. [1998]). Although these approaches
provide better query performance, it is
not always practical to rebuild the index
periodically; see Agarwal and Procopiuc
[2002] for a recent review of the known
indexing techniques.

(2) Continuous Queries. In the above
queries, the query range was spatially
fixed. One could also ask queries when
the location of the query range is also
moving [Sistla et al. 1997]. For example,
keep track of all cars within 5 miles. Of
course, such a query can be answered by
asking location-based queries repeatedly,
but it would be very expensive. One would
like to combine KDS with procedures
for location-based approaches to answer
such queries. The known lower bounds
on range-searching data structures imply
that it is hard to answer such queries
efficiently in the worst case. But can one
exploit the constraints on motion to an-
swer them efficiently?

(3) Trajectory-Based Queries. These
queries involve the topology of trajecto-
ries and derived information such as ve-
locity of the objects [Pfoser et al. 2000].
These queries are deemed critical, but
also rather expensive. Here is a typical
query: Which two objects will be within
one mile during the next ten minutes?
Which objects are heading East, or which
objects are moving at speed greater than
65 miles/hour? An even harder query is:
report all objects whose speed doubles in
the next ten minutes.

(4) Dynamization. It is an inherent
characteristic that new objects arrive and
that the positions of existing objects are
updated dynamically. Hence, the index
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should support fast insert, delete oper-
ations. Although basic spatial indexing
schemes, such as R-trees or kd -trees, sup-
port insertion/deletion of objects, the prob-
lem is considerably harder for indices han-
dling moving objects because they have to
store additional information to predict the
motion of objects. This information is ex-
pensive to update as objects are inserted
or deleted.

The current indexing schemes basically
delete and reinsert a point whenever the
trajectory of an object changes. In may ap-
plications, the trajectory of an object is
known in advance. Can this information
be used to avoid explicit deletion and rein-
sertion of the object?

(5) Uncertainty. Since in many appli-
cations the position of objects is being re-
ceived through a sensor such as GPS, un-
certainty in position and velocity of the
objects is inevitable. Indexing schemes
that can handle uncertainty are needed.
A simple model of uncertainty is to allow
an interval of values for each of the pa-
rameters defining the dynamic attributes
of an object. In this model, the uncer-
tainty in position corresponds to a “ball”
in which the object can lie, and the uncer-
tainty in velocity corresponds to a “cone” in
which the object lies [Agarwal et al. 2000;
Wolfson et al. 1998, 1999]. These sim-
ple models have been incorporated in a
few indexing schemes, but a more system-
atic study is needed. More sophisticated
parametric models have been developed
for modeling uncertainty. Although these
methods have been successfully used for
tracking moving objects, they have not
been used in the context of databases. How
to incorporate them in indexing schemes is
a challenging open problem.

9. MOBILE WIRELESS NETWORKS

A world of “anytime, anywhere, anyhow”
computing is being created by a unique
combination of two powerful technolog-
ical trends: rapid component miniatur-
ization and the emergence of high speed
wireless communication. The recent boom
in the use of cell phones is merely the be-

ginning of a much larger trend towards
broadband wireless networks that carry
not only voice, but all kinds of multimedia
data. Wireless data networking presents
a multitude of challenges that are distinct
from their fixed infrastructure networking
counterpart:

(1) [Heterogeneity]. There are a variety
of wireless technologies (e.g., modu-
lation schemes and spectrum bands),
diverse devices (e.g., laptops, PDAs,
data-enabled cell phones and pagers),
communication protocols (e.g., several
3G standards for wireless and SMS).
Finally, the channel conditions under
which wireless communication occurs
vary widely.

(2) [Resource Constraints]. The na-
ture of wireless technology and
devices presents stringent resource
constraints, such as the available
spectrum (number of channels, codes,
slots, etc.) and the power (total and
received power), among others.

(3) [Mobility]. The most distinguishing as-
pect of a wireless network is the mobil-
ity of its clients. Dealing with mobil-
ity presents new problems (handoffs,
paging clients, etc.) as well as it com-
plicates existing ones (such as power
allocation schemes where channel con-
ditions vary with mobility patterns). In
fact, any structuring mechanism pro-
vided by the network that exploits the
local topology of the nodes has to be
adapted to motion.

9.1. Mobility and Routing

A mobile ad hoc network (MANET) is
an autonomous system of mobile routers
and hosts connected by wireless links.
The network is self-organizing and self-
configuring, with nodes establishing the
necessary routes among themselves with-
out the help of a fixed infrastructure.
Since the communicating hosts may be
some distance apart, multiple network
hops through intermediate nodes may
be required to complete the route. The
hosts themselves act like “mobile routers,”
and cooperatively forward messages not
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addressed to them. As these hosts move
around, the routing protocol of the net-
work must adapt its routing decisions
to maintain communication. The rate of
topology change may be quite dramatic in
some ad hoc networks.

Since the topology of the network is
constantly changing, the routing proto-
cols must cope with frequent link fail-
ure and disconnections. The distribution
of up-to-date information can easily over-
load the network, while out-of-date in-
formation can drive a network into in-
stability [Royer and Toh 1999; Broch
et al. 1998]. Thus, the shortest path rout-
ing used commonly in fixed infrastruc-
ture networks may be the wrong rout-
ing algorithm for ad hoc networks [Karp
and Kung 2000]. Instead, discovering and
routing on “long lived” routes may be more
desirable.

In large-scale ad hoc networks, it may be
infeasible, and even undesirable, for each
host to maintain up-to-date information
about the locations of all hosts and the
topology of the entire network. Perhaps
a more useful approach will be a statis-
tical modeling of the movement of indi-
vidual hosts. A grand challenge in the
field, which may be currently just aca-
demic, but which will have tremendous
impact on systems and performance, is
the following: Can we model the mobil-
ity patterns of users at varying levels of
granularity? The question should be ex-
plored in the context of modeling arrival
patterns of customers to service queues,
web server request sizes, etc. It could
be refined in many ways—for example,
does an individual user’s mobility pat-
tern fit a small number of short random
walks on the plane? Can the number of
roaming users in any cell at any mo-
ment be predicted without understanding
the mobility pattern of individual users?
This grand challenge may involve input
from geometers on finding a small set
of attributes of the users’ trajectories on
the globe that are most predictive of the
users’ movements. One of the aspects of
this grand challenge that is interesting is
its “internet” scale of users and resource
usages.

9.2. Mobility and Network Layers

Another approach to study the impact of
mobility on networking infrastructure is
to study its effect on the various architec-
tural layers of the network. We list below
some fundamental issues for each layer
that are worth exploring.

(1) [Physical Layer]. How does one per-
form resource scheduling at the phys-
ical layer in order to optimize perfor-
mance for a given mobility pattern. For
instance, how does one optimize across
issues of power consumption, error cor-
rection, coding, rate control, channel
assignment, and so on.

(2) [MAC Layer]. How does one discover
resources in the presence of ad-hoc
mobility, such as reachability testing,
topology determination, and so on.

(3) [Transport Layer]. How and to what ex-
tent must one implement end-to-end
TCP properties in presence of host
mobility? How does high vs. low mo-
bility affect persistence of TCP connec-
tions and fragmentation? Packet loss
probabilities are significantly higher
in wireless networks than in the wired
networks due to widely varying chan-
nel conditions that are compounded by
users’ mobility.

Specifically, the TCP reacts quite vi-
olently to packet losses, with its expo-
nential backoff mechanism, because it
interprets the loss of packet to mean
congestion in the network. However,
in the wireless networks, the packet
losses are just as likely the result
of transmission loss as congestion, so
how should the TCP rate control mech-
anism be modified?

(4) [Network Layer]. How should one
balance the cost of “redirection” vs.
“paging,” in networks for accessing a
user by better understanding of mobil-
ity models?

(5) [Application Layer]. How does one
support location specific queries on
databases of yellow pages or services?
How does one support a geographi-
cally connected community of users or
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“buddies”? These involve testing geo-
graphic neighborhoods based on dis-
tance constraints where distance up-
dates are obtained by pinging.

Many additional issues are likely to
arise as wireless data networking and web
evolve to become more widespread. While
many of the issues listed above are al-
gorithmic, they are best explored by col-
laboration with electrical engineers and
computer scientists who work on differ-
ent layers of wireless networking in or-
der to be effective. Such collaborations
represent an opportunity for the theoreti-
cal computer science community to formu-
late and solve the fundamental problems
of interest in mobility and related issues
in wireless networking. Finally, there is
clearly a large overlap between the prob-
lems discussed here and those in Section 8
on spatio-temporal queries for mobile
data.

10. CHALLENGES FOR THE FUTURE

We conclude this article by reviewing a
number of challenging issues that cut
across many of the previously discussed
areas. It is our hope that this article will
motivate researchers in these diverse dis-
ciplines to seek common ground and en-
able the cross-fertilization of ideas in mo-
tion modeling.

10.1. Motion Representation and Analysis

This covers most of the topics we have al-
ready presented in earlier sections:

(1) Uncertainty. Whenever we try to
model motion in the physical world, we
must deal with uncertainty. So far only
the computer vision and robotics com-
munities have developed refined tools for
the probabilistic treatment of object mo-
tion [Arulampalam et al. 2002]. Such ideas
could also prove very useful in temporal
database and networking domains.

(2) Robustness. Many geometric al-
gorithms suffer from robustness prob-
lems because of mismatch between fast
floating-point computer arithmetic, which
is finite precision, and the semantics of

real analysis [Schirra 2000]. Algorithms
fail when an approximate computation
yields an incorrect or even inconsistent
qualitative property (often a topological
property). In the context of kinetic algo-
rithms, algebraic representation of trajec-
tories and uncertainty in the input makes
the problem even more acute.

(3) Aggregation. Related to uncer-
tainty is the issue of statistical models
for representing aggregate motion, say the
motion of cars on the freeway, or a flock
of birds. We may be able to reason reli-
ably about the high-level behavior of the
system, even though we have large uncer-
tainty about the motion of each individual
object.

(4) Hierarchical Representations of
Complex Motion. While hierarchical
representation methods for shape are
highly developed, much less is known for
motion. A molecular dynamics simulation,
for example, includes all the atomic vibra-
tions caused by thermal noise, which can
obscure the large-scale structure of the
motion that we want to understand. How
to represent the essential dynamics of
molecules, which has a physical meaning,
remains a challenging problem [Amadei
et al. 1992; Teodoro et al. 2000].

(5) Marrying the Continuous and the
Discrete. Most physical systems evolve
following continuous evolution laws, yet
their evolution is punctuated by discrete
events, such as collisions, that can alter
these laws. Historically, the communities
that have studied the continuous and dis-
crete aspects of this problem have been
distinct (scientific computing vs. discrete
algorithms). A much tighter integration
between the two can lead to substantial
progress.

(6) Trade-Off between Realism and Ef-
ficiency. Little has been done so far to
formally explore trade-offs between ac-
curacy and efficiency [Agarwal and Har-
Peled 2001]. Such analyses can benefit all
of the areas we have been discussing.

(7) Decentralization. Distributed mo-
tion algorithms are equally important for
large-scale simulations and for low-power
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mobile devices in situations such as ad hoc
networking or sensor nets [Bonnet et al.
2000, 2001].

(8) Querying Motion. Many funda-
mental questions remain on how best to
sense and organize mobile data when the
goal is to answer certain queries about
the mobile system (and there is no need
to know the full state of the system in
between).

10.2. Motion Integration

Though each of the areas we discussed has
good reasons for the motion representa-
tions it has chosen, this diversity hinders
the development of end-to-end systems
where techniques form several disciplines
need to process motion data in an inte-
grated fashion. Currently, big gaps exist
between the motion representations best
suited for visual motion analysis and those
for motion generation, for example. We
feel it is important to define a number of
fundamental motion representations that
can be used across areas and that can form
the basis for implementing integrated
applications.
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