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Abstract. The Fast Fourier Transform (FFT) is of primary importance
and a fundamental kernel in many computationally intensive scientific
applications. In this paper we investigate its performance on the Sony-
Toshiba-IBM Cell Broadband Engine, a heterogeneous multicore chip
architected for intensive gaming applications and high performance com-
puting. The Cell processor consists of a traditional microprocessor (called
the PPE) that controls eight SIMD co-processing units called synergis-
tic processor elements (SPEs). We exploit the architectural features of
the Cell processor to design an efficient parallel implementation of Fast
Fourier Transform (FFT). While there have been several attempts to
develop a fast implementation of FFT on the Cell, none have been able
to achieve high performance for input series with several thousand com-
plex points. We use an iterative out-of-place approach to design our
parallel implementation of FFT with 1K to 16K complex input samples
and attain a single precision performance of 18.6 GFLOP/s on the Cell.
Our implementation beats FFTW on Cell by several GFLOP/s for these
input sizes and outperforms Intel Duo Core (Woodcrest) for inputs of
greater than 2K samples. To our knowledge we have the fastest FFT for
this range of complex inputs.

1 Introduction

The Cell Broadband Engine (or the Cell/B.E.) [15,8,9,18] is a novel
high-performance architecture designed by Sony, Toshiba, and IBM (STI), pri-
marily targeting multimedia and gaming applications. The Cell BE consists
of a traditional microprocessor (called the PPE) that controls eight SIMD co-
processing units called synergistic processor elements (SPEs), a high speed mem-
ory controller, and a high bandwidth bus interface (termed the element in-
terconnect bus, or EIB), all integrated on a single chip. The Cell is used in
Sony’s PlayStation 3 gaming console, Mercury Computer System’s dual Cell-
based blade servers, and IBM’s QS20 Cell Blades.

In this paper we present our design of an efficient parallel implementation of
Fast Fourier Transform on the Cell Broadband Engine. FFT is of primary im-
portance and a fundamental kernel in many computationally intensive scientific
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applications such as computer tomography, data filtering and fluid dynamics.
Another important application area of FFTs is in spectral analysis of speech,
sonar, radar, seismic and vibration detection. FFTs are also used in digital filter-
ing, signal decomposition, and in solution of partial differential equations. The
performance of these applications rely heavily on the availability of a fast routine
for Fourier transforms.

The literature contains several publications related to FFTs on the Cell/B.E.
processor. Williams et al. [19] analyze the Cell’s peak performance for FFT
of various types (1D, 2D), accuracy (single, double precision) and input sizes.
Cico, Cooper and Greene [7] estimate the performance of 22.1 GFLOP/s for a
single FFT that is reside in the local store of one SPE, or 176.8 GFLOP/s for
computing 8 independent FFTs with 8K complex input samples. (Note that all
other computation rates given in this paper – except for Cico et al. – consider
the performance of a single FFT and include the overheads when considering
that the source and output of the FFT are both stored in main memory.) In
another work, Chow, Fossum and Brokenshire [6] achieve 46.8 GFLOP/s for a
large FFT (16 million complex samples) on the Cell that is highly-specialized
for this particular input size. FFTW on the Cell [11] is a highly-portable FFT
library of various types, precision and input size.

In our design of FFTC we use an iterative out-of-place approach to solve
1D FFTs with 1K to 16K complex input samples. We describe our method-
ology to partition the work among the SPEs to efficiently parallelize a single
FFT computation where the source and output of the FFT are both stored in
main memory. This differentiates our work from the prior literature and bet-
ter represents the performance that one realistically sees in practice. The al-
gorithm requires a synchronization among the SPEs after each stage of FFT
computation. Our synchronization barrier is designed to use inter SPE commu-
nication without any intervention from the PPE. The synchronization barrier
requires only 2 log p stages (p: number of SPEs) of inter SPE communication
by using a tree-based approach. This significantly improves the performance,
as PPE intervention not only results in a high communication latency but also
in sequentialization of the synchronization step. We achieve a performance im-
provement of over 4 as we vary the number of SPEs from 1 to 8. We attain
a performance of 18.6 GFLOP/s for a single-precision FFT with 8K complex
input samples and also show significant speedup in comparison with other ar-
chitectures. Our implementation is generic for this range of complex inputs.
The source code is freely available from our CellBuzz project in SourceForge
(http://sourceforge.net/projects/cellbuzz/).

This paper is organized as follows. We first describe the Fast Fourier Trans-
form and the algorithm we choose to parallelize in Section 2. The novel architec-
tural features of the Cell processor are reviewed in Section 3. We then present
our design to parallelize FFT on the Cell and optimize for the SPEs in Section 4.

http://sourceforge.net/projects/cellbuzz/
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2 Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm that is used for comput-
ing the Discrete Fourier Transform. Some of the important application areas of
FFTs have been mentioned in the previous section. There are several algorith-
mic variants of the FFTs that have been well studied for parallel processors and
vector architectures [1,2,3,4].

In our design we utilize the naive Cooley-Tukey radix-2 Decimate in Frequency
(DIF) algorithm. The pseudo-code for an out-of-place approach of this algorithm
is given in Alg. 1. The algorithm runs in log N stages and each stage requires
O(N) computation, where N is the input size.

Algorithm 1: Sequential FFT algorithm
Input: array A[0] of size N

1 NP ←− 1 ;
2 problemSize ←− N ;
3 dist ←− 1;
4 i1 ←− 0;
5 i2 ←− 1;
6 while problemSize > 1 do

7 Begin Stage;
8 a ←− A[i1];
9 b ←− A[i2];

10 k = 0, jtwiddle = 0;
11 for j ← 0 to N − 1 step 2 ∗ NP do

12 W ←− w[jtwiddle];
13 for jfirst ← 0 to NP do

14 b[j + jfirst] ← a[k + jfirst] + a[k + jfirst + N/2];
15 b[j + jfirst + Dist] ← (a[k + jfirst] − a[k + jfirst + N/2]) ∗ W ;

16 k ← k + NP ;
17 jtwiddle ← jtwiddle + NP ;

18 swap(i1, i2);
19 NP ← NP ∗ 2;
20 problemSize ← problemSize/2;
21 dist ← dist ∗ 2;
22 End Stage;

Output: array A[i1] of size N

The array w contains the twiddle factors required for FFT computation. At
each stage the computed complex samples are stored at their respective locations
thus saving a bit-reversal stage for output data. This is an iterative algorithm
which runs until the parameter problemSize reduces to 1. Fig. 1 shows the
butterfly stages of this algorithm for an input of 16 sample points (4 stages).
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Fig. 1. Butterflies of the ordered DIF FFT algorithm

Apart from the theoretical complexity, another common performance metric
used for the FFT algorithm is the floating point operation (FLOP) count. On
analyzing the sequential algorithm, we see that during each iteration of the
innermost for loop there is one complex addition for the computation of first
output sample, which accounts for 2 FLOPs. The second output sample requires
one complex subtraction and multiplication which accounts for 8 FLOPs. Thus,
for the computation of two output samples during each innermost iteration we
require 10 FLOPs, which suggests that we require 5 FLOPs for the computation
of a complex sample at each stage. The total computations in all stages are
N log N which makes the total FLOP count for the algorithm as 5N log N .

3 Cell Broadband Engine Architecture

The Cell Broadband Engine (Cell/B.E.) processor is a heterogeneous multi-core
chip that is significantly different from conventional multiprocessor or multi-core
architectures. It consists of a traditional microprocessor (the PPE) that controls
eight SIMD co-processing units called synergistic processor elements (SPEs),
a high speed memory controller, and a high bandwidth bus interface (termed
the element interconnect bus, or EIB), all integrated on a single chip. Fig. 2
gives an architectural overview of the Cell/B.E. processor. We refer the reader
to [17,10,16,12,5] for additional details.

The PPE runs the operating system and coordinates the SPEs. It is a 64-bit
PowerPC core with a vector multimedia extension (VMX) unit, 32 KByte L1
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Fig. 2. Cell Broadband Engine Architecture

instruction and data caches, and a 512 KByte L2 cache. The PPE is a dual issue,
in-order execution design, with two way simultaneous multithreading. Ideally,
all the computation should be partitioned among the SPEs, and the PPE only
handles the control flow.

Each SPE consists of a synergistic processor unit (SPU) and a memory flow
controller (MFC). The MFC includes a DMA controller, a memory management
unit (MMU), a bus interface unit, and an atomic unit for synchronization with
other SPUs and the PPE. The SPU is a micro-architecture designed for high
performance data streaming and data intensive computation. It includes a 256
KByte local store (LS) memory to hold SPU program’s instructions and data.
The SPU cannot access main memory directly, but it can issue DMA commands
to the MFC to bring data into the Local Store or write computation results
back to the main memory. DMA is non-blocking so that the SPU can continue
program execution while DMA transactions are performed.

The SPU is an in-order dual-issue statically scheduled architecture. Two SIMD
[14] instructions can be issued per cycle: one compute instruction and one mem-
ory operation. The SPU branch architecture does not include dynamic branch
prediction, but instead relies on compiler-generated branch hints using prepare-
to-branch instructions to redirect instruction prefetch to branch targets. Thus
branches should be minimized on the SPE as far as possible.

The MFC supports naturally aligned transfers of 1,2,4, or 8 bytes, or a multiple
of 16 bytes to a maximum of 16 KBytes. DMA list commands can request a
list of up to 2,048 DMA transfers using a single MFC DMA command. Peak
performance is achievable when both the effective address and the local storage
address are 128 bytes aligned and the transfer is an even multiple of 128 bytes.
In the Cell/B.E., each SPE can have up to 16 outstanding DMAs, for a total
of 128 across the chip, allowing unprecedented levels of parallelism in on-chip
communication. Kistler et al. [16] analyze the communication network of the
Cell/B.E. and state that applications that rely heavily on random scatter and or
gather accesses to main memory can take advantage of the high communication
bandwidth and low latency.

With a clock speed of 3.2 GHz, the Cell processor has a theoretical peak
performance of 204.8 GFLOP/s (single precision). The EIB supports a peak



FFTC: Fastest Fourier Transform for the IBM Cell Broadband Engine 177

bandwidth of 204.8 GB/s for intrachip transfers among the PPE, the SPEs,
and the memory and I/O interface controllers. The memory interface controller
(MIC) provides a peak bandwidth of 25.6 GB/s to main memory. The I/O
controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s outbound.

4 FFTC: Our FFT Algorithm for the Cell/B.E. Processor

There are several architectural features that make it difficult to optimize and
parallelize the Cooley-Tukey FFT algorithm on the Cell Broadband Engine. The
algorithm is branchy due to presence of a doubly nested for loop within the outer
while loop. This results in a compromise on the performance due to the absence
of a branch predictor on the Cell. The algorithm requires an array that consists
of the N/2 complex twiddle factors. Since each SPE has a limited local store
of 256 KB, this array cannot be stored entirely on the SPEs for a large input
size. The limit in the size of the local store memory also restricts the maximum
input data that can be transferred to the SPEs. Parallelization of a single FFT
computation involves synchronization between the SPEs after every stage of
the algorithm, as the input data of a stage is the output data of the previous
stage. To achieve high performance it is necessary to divide the work equally
among the SPEs so that no SPE waits at the synchronization barrier. Also, the
algorithm requires log N synchronization stages which impacts the performance.
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Fig. 3. Partition of the input ar-
ray among the SPEs (e.g. 8 SPEs
in this illustration)

It is difficult to vectorize every stage of the FFT
computation. For vectorization of the first two
stages of the FFT computation it is necessary to
shuffle the output data vector, which is not an
efficient operation in the SPE instruction set ar-
chitecture. Also, the computationally intensive
loops in the algorithm need to be unrolled for
best pipeline utilization. This becomes a chal-
lenge given a limited local store on the SPEs.

4.1 Parallelizing FFTC for the Cell

As mentioned in the previous section for best
performance it is important to partition work
among the SPEs to achieve load balancing. We
parallelize by dividing the input array held in
main memory into 2p chunks, each of size N

2p ,
where p is the number of SPEs.

During every stage, SPE i is allocated chunk
i and i + p from the input array. The basis for
choosing these chunks for an SPE lies in the fact
that these chunks are placed at an offset of N/2
input elements. For the computation of an output complex sample we need to
perform complex arithmetic operation between input elements that are separated
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Fig. 4. Vectorization of the first two stages of the FFT algorithm. These stages require
a shuffle operation over the output vector to generate the desired output.

by this offset. Fig. 3 gives an illustration of this approach for work partitioning
among 8 SPEs.

The PPE does not intervene in the FFT computation after this initial work
allocation. After spawning the SPE threads it waits for the SPEs to finish
execution.
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Send
1

Send
1

Send
1

Send 2 Send 2
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Recv. Recv. Recv. Recv.

Recv. Recv.

Recv.

Fig. 5. Stages of the synchronization barrier using inter SPE communication. The
synchronization involves sending inter SPE mailbox messages up to the root of the
tree and then sending back acknowledgment messages down to the leaves in the same
topology.
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Algorithm 2: Parallel FFTC algorithm: View within SPE
Input: array in PPE of size N

Output: array in PPE of size N

1 NP ←− 1 ;
2 problemSize ←− N ;
3 dist ←− 1;
4 fetchAddr ←− PPE input array;
5 putAddr ←− PPE output array;
6 chunkSize ←− N

2∗p
;

7 Stage 0 (SIMDization achieved with shuffling of output vector);
8 Stage 1 ;
9 while NP < buffersize && problemSize > 1 do

10 Begin Stage;
11 Initiate all DMA transfers to get data;
12 Initialize variables;
13 for j ← 0 to 2 ∗ chunkSize do

14 Stall for DMA buffer;
15 for i ← 0 to buffersize/NP do

16 for jfirst ← 0 to NP do

17 SIMDize computation as NP > 4;
18 Update j, k, jtwiddle;
19 Initiate DMA put for the computed results

20 swap(fetchAddr , putAddr);
21 NP ← NP ∗ 2;
22 problemSize ← problemSize/2;
23 dist ← dist ∗ 2;
24 End Stage;
25 Synchronize using Inter-SPE communication;
26 while problemSize > 1 do

27 Begin Stage;
28 Initiate all DMA transfers to get data;
29 Initialize variables;
30 for k ← 0 to chunkSize do

31 for jfirst ← 0 to min(NP, chunkSize − k) step buffersize do

32 Stall for DMA buffer;
33 for i ← 0 to buffersize do

34 SIMDize computation as buffersize > 4;
35 Initiate DMA put for the computed results;
36 Update j, k, jtwiddle;

37 swap(fetchAddr , putAddr);
38 NP ← NP ∗ 2;
39 problemSize ← problemSize/2;
40 dist ← dist ∗ 2;
41 End Stage;
42 Synchronize using Inter SPE communication;
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4.2 Optimizing FFTC for the SPEs

After dividing the input array among the SPEs, each SPE is allocated 2 chunks
each of size N

2p . Each SPE, fetches this chunk from main memory using DMA
transfers and uses double-buffering to overlap memory transfers with computa-
tion. Within each SPE, after computation of each buffer, the computed buffer is
written back into main memory at the correct offset using DMA transfers.

The detailed pseudo-code is given in Alg. 2. The first two stages of the FFT
algorithm are duplicated, that correspond to the first two iterations of the outer
while loop in sequential algorithm. This is necessary as the vectorization of these
stages requires a shuffle operation (spu shuffle()) over the output to re-arrange
the output elements to their correct locations. Please refer to Fig. 4 for an
illustration of this technique for stages 1 and 2 of the FFT computation.

The innermost for loop (in the sequential algorithm) can be easily vectorized
for NP > 4, that correspond to the stages 3 through log N . However, it is impor-
tant to duplicate the outer while loop to handle stages where NP < buffersize,
and otherwise. The global parameter buffersize is the size of a single DMA get
buffer. This duplication is required as we need to stall for a DMA transfer to
complete, at different places within the loop for these two cases. We also unroll
the loops to achieve better pipeline utilization. This significantly increases the
size of the code thus limiting the unrolling factor.

SPEs are synchronized after each stage, using inter-SPE communication. This
is achieved by constructing a binary synchronization tree, so that synchronization
is achieved in 2 log p stages. The synchronization involves the use of inter-SPE
mailbox communication without any intervention from the PPE. Please refer to
Fig. 5 for an illustration of the technique.

This technique performs significantly better than other synchronization tech-
niques that either use chain-like inter-SPE communication or require the PPE
to synchronize between the SPEs. The chain-like technique requires 2p stages of
inter-SPE communication whereas with the intervention of the PPE latency of
communication reduces the performance of this barrier.

5 Performance Analysis of FFTC

We use the Cell SDK 2.1 for instruction level profiling and performance analysis
of the code. The code was compiled using the xlc compiler, that is included in
the SDK, with level 3 optimization.

For parallelizing a single 1D FFT on the Cell, it is important to divide the work
among the SPEs. Fig. 6 shows the performance of our algorithm with varying
the number of SPEs for 1K and 4K complex input samples. The performance
scales well with the number of SPEs which suggests that load is balanced among
the SPEs.

Our design requires a barrier synchronization among the SPEs after each
stage of the FFT computation. We focus on FFTs that have from 1K to 16K
complex input samples. For relatively small inputs and as the number of SPEs
increases, the synchronization cost becomes a significant issue since the time
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(a) (b)

Fig. 6. Running Time of our FFTC code on 1K and 4K inputs as we increase the
number of SPEs

Fig. 7. Performance comparison of FFTC with other architectures for various input
sizes of FFT. The performance numbers are from benchFFT from the FFTW website.

per stage decreases but the cost per synchronization increases. With instruction
level profiling we determine that the time required per synchronization stage
using our tree-synchronization barrier is about 1 microsecond (3200 clock cycles).
We achieve a high performance barrier using inter-SPE mailbox communication
which significantly reduces the time to send a message, and by using the tree-
based technique we reduced the number of communication stages required for
the barrier (2 log p steps).
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Fig. 8. Analysis of the pipeline utilization using the IBM Assembly Visualizer for Cell
Broadband Engine. The top figure shows full pipeline utilization for certain parts of
the code and the bottom figure shows areas where the pipeline stalls due to data
dependency.

Fig. 7 shows the single precision performance for complex inputs of FFTC,
our optimized FFT, as compared with the following architectures:

– IBM Power 5: IBM OpenPower 720, Two dual-core 1.65 GHz POWER5
processors.

– AMD Opteron: 2.2 GHz Dual Core AMD Opteron Processor 275.
– Intel Duo Core: 3.0 GHz Intel Xeon Core Duo (Woodcrest), 4MB L2 cache.
– Intel Pentium 4: Four-processor 3.06 GHz Intel Pentium 4, 512 KB L2.
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We use the performance numbers from benchFFT [11] for the comparison with
the above architectures. We consider the FFT implementation that gives best
performance on these architectures for comparison.

The Cell/B.E. has a two instruction pipelines, and for achieving high perfor-
mance it is important to optimize the code so that the processor can issue two
instructions per clock cycle. This level of optimization requires inspecting the
assembly dump of the SPE code. For achieving pipeline utilization it is required
that the gap between dependent instructions needs to be increased. We use the
IBM Assembly Visualizer for Cell/B.E. tool to analyze this optimization. The
tool highlights the stalls in the instruction pipelines and helps the user to reorga-
nize the code execution while maintaining correctness. Fig. 8 shows the analysis
of pipeline utilization. Some portions utilize these pipelines effectively (top fig-
ure) whereas there are a few stalls in other parts of the code which still need to
be optimized (bottom figure).

6 Conclusions

In summary, we present FFTC, our high-performance design to parallelize the
1D FFT on the Cell Broadband Engine processor. FFTC uses an iterative out-of-
place approach and we focus on FFTs with 1K to 16K complex input samples.
We describe our methodology to partition the work among the SPEs to effi-
ciently parallelize a single FFT computation. The computation on the SPEs is
fully vectorized with other optimization techniques such as loop unrolling and
double buffering. The algorithm requires a synchronization among the SPEs af-
ter each stage of FFT computation. Our synchronization barrier is designed to
use inter SPE communication only without any intervention from the PPE. The
synchronization barrier requires only 2 log p stages (p: number of SPEs) of inter
SPE communication by using a tree-based approach. This significantly improves
the performance, as PPE intervention not only results in a high communication
latency but also results in sequentializing the synchronization step. We achieve
a performance improvement of over 4 as we vary the number of SPEs from 1 to
8. We expect that the performance of FFTC will scale on the next generation
of the IBM Cell Broadband Engine processor that may offer 32 SPEs [13]. We
also demonstrate FFTC’s performance of 18.6 GFLOP/s for an FFT with 8K
complex input samples and show significant speedup in comparison with other
architectures. Our implementation outperforms Intel Duo Core (Woodcrest) for
input sizes greater than 2K and to our knowledge we have the fastest FFT for
these range of complex input samples.
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