Advanced Architecture

Prof. A. Massini

June 17, 2025

PART B

Student's Name

Matricola number

Exercise 1 (5 points)	
Exercise 2 (5 points)	
Exercise 3 (6 points)	
Exercise 4 (5 points)	
Exercise 5 (6 points)	
Exercise 6 (5 points)	
Total (32 points)	

Exercise 1 (5 points) – Interconnection Networks

Briefly explain how the routing algorithm works for a **Benes network.**

Consider a Benes network of size N=8 and show how to realize permutation $P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 0 & 2 & 7 & 5 & 4 & 1 & 3 \end{pmatrix}$

Exercise 2 (5 points) – Interconnection networks

Illustrate the design of an XGFT(4; 2, 1, 4, 2; 1, 4, 1, 2), specifying how many nodes there are on each level, how many parents and children they have, and then showing the drawing of the network(remember the recursive construction).

Exercise 3 (6 points) – Interconnection Networks

- a) Design a Clos network of size 475 x 475, having **only square crossbar modules of size 16**, composing them as necessary, depending on the stage considered. Specify the size and number of switches for each stage. Consider both cases, **strictly non-blocking** and **rearrangeable** networks.
- b) Discuss what network is more advantageous, after calculating:
 - i. the cost of the crossbar 475 x 475
 - ii. the cost of the Clos networks strictly non-blocking and rearrangeable non-blocking designed in the previous point
 - iii. the cost of the Benes with 512 inputs/outputs

Exercise 4 (5 points) – Quantum circuits

a) Compute the state vector of a two-qubit system composed by the two qubits:

$$\psi_1 = \frac{1}{3} |0\rangle + \frac{2\sqrt{2}}{3}i|1\rangle$$
$$\psi_3 = \frac{\sqrt{3}}{2} |0\rangle - \frac{1}{2}i|1\rangle$$

b) Verify the normalization condition of the two-qubit system.

c) Compute the probability of measuring $|00\rangle$ and the probability of measuring $|10\rangle$.

Exercise 5 (6 points) – Quantum circuits

- a) Consider gate associated to the matrix $V = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$ and show the matrix of $U = V \otimes Z$ where $Z = \begin{bmatrix} 1 & i & 1-i \\ 1-i & 1+i \end{bmatrix}$
 - $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and show that U is unitary.

b) Consider the circuit composed by the gate represented by gate U above followed by a CNOT. Show how the circuit acts on the statevector $\left[\frac{i}{4}; \frac{\sqrt{3}}{2\sqrt{2}}; \frac{1}{4}; \frac{\sqrt{2}}{2}i\right]$.

Exercise 6 (5 points) - GPU & CUDA

Technical specifications	Compute capability (version)											
	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2		
Maximum dimensionality of grid of thread blocks	2				3							
Maximum x-dimension of a grid of thread blocks	65535					2 ³¹ -1						
Maximum y-, or z-dimension of a grid of thread blocks	65535											
Maximum dimensionality of thread block	3											
Maximum x- or y-dimension of a block	512					1024						
Maximum z-dimension of a block	64											
Maximum number of threads per block	512					1024						
Warp size	32											
Maximum number of resident blocks per multiprocessor	8					16			32			
Maximum number of resident warps per multiprocessor	24 32		2	48	64							
Maximum number of resident threads per multiprocessor	768 10			24	1536	2048						
Technical specifications	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2		
	Compute capability (version)											

Consider a matrix of size 4850x2200. You would like to assign one thread to each matrix element.

- a) How would you select the **2D grid** dimensions and **2D block** dimensions of your kernel to **minimize the number of idle threads** on a device having compute capability 3.7? Specify how many idle threads you have.
- b) Repeat considering a device with compute capability 2.x