Advanced Architectures Prof. A. Massini June 5, 2025 End-of-term test Student's Name Matricola number

Exercise 1 (4 points)	
Exercise 2 (4 points)	
Exercise 3 (4 points)	
Question 1 (4 points)	
Question 2 (4 points)	
Exercise 4 (4 points)	
Exercise 5 (4 points)	
Exercise 6 (4 points)	
Total (32 points)	

Exercise 1 (4 points) - GPU & CUDA

You need to write a kernel that operates on a matrix of size **1440x2340**. You would like to assign a thread to each element of the array and use the maximum possible number of threads per block on your device.

- a) How would you select the dimensions of a **2D grid and 2D rectangular blocks** for your kernel, minimizing the number of idle threads? Consider a device having compute capability 1.3.
- a) How would you select the dimensions of a **2D grid** and **3D blocks** with the three sides all equal for your kernel, minimizing the number of idle threads? Consider a device having compute capability 3.7.

Technical specifications			Compute capability (version)							
	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2
Maximum dimensionality of grid of thread blocks		2 3								
Maximum x-dimension of a grid of thread blocks	65535 2 ³¹ -1									
Maximum y-, or z-dimension of a grid of thread blocks		65535								
Maximum dimensionality of thread block	3									
Maximum x- or y-dimension of a block	512 1024									
Maximum z-dimension of a block		64								
Maximum number of threads per block	512 1024									
Warp size			32							
Maximum number of resident blocks per multiprocessor		8 16				3	32			
Maximum number of resident warps per multiprocessor	2	24 32 48 64								
Maximum number of resident threads per multiprocessor	7	768		1024		2048				
Technical specifications	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2
		Compute capability (version)								

Exercise 2 (4 points) – Interconnection Networks – CLOS
Design a Clos network of size 510 x 510, using in the first stage modules having 20 inputs. Consider both cases, strictly non-blocking and rearrangeable network.
Compare the cost of the crossbar 510 x 510 and the Clos network, strictly non-blocking and rearrangeable non-blocking, designed in the previous point.

Exercise 3 (4 points) – Interconnection networks – (2 log N - 1) MIN

Shuffle-Shuftraight state	of size N=8 ι	using the swit	ches below	Is it possible to realize the permutation $P = \begin{pmatrix} 01 & 23 & 45 & 67 \\ 46 & 10 & 32 & 75 \end{pmatrix}$ setting all the switches in the central s	tage
_	_	ges would yo ne final config		te the permutation P above, that guarantees to find a solution? Draw the network and show the	

Question 1 (4 points)

Briefly explain what entanglement between two qubits is, how it can be explained in mathematical terms and show the expressions of the Bell states.					

Question 2 (4 points)

Explain what CUDA threads are and how they are organized in terms of blocks and grids. Describe how to obtain a unique ID for each thread by using the block ID and thread ID, in the case of a 2D grid and 2D blocks and in the case of 1D grid and 3D blocks.						
and in the cas	e or 10 grid and	a 3D blocks.				

Exercises 4 (4 points) – Interconnection networks

Illustrate the design of an XGFT(3; 4, 2, 2; 1, 4, 2), specifying how many nodes there are on each level, how many parents and children they have, and then showing the drawing of the network.

Exercises 5 (4 points) – Quantum qubit systems

a) Verify which of the following systems consisting of two qubits is valid:

$$\psi_1 = \frac{1}{2\sqrt{3}} |00\rangle + \frac{3}{2\sqrt{15}} i|01\rangle + \frac{1}{3} i|01\rangle - \frac{\sqrt{3}}{\sqrt{15}} |11\rangle$$

$$\psi_2 = \frac{\sqrt{6}}{6} |00\rangle + \frac{\sqrt{6}}{2\sqrt{3}} i |01\rangle + \frac{1}{2\sqrt{3}} i |01\rangle - \frac{1}{2} |11\rangle$$

b) Compute the probability of measuring $|01\rangle$ for the valid system

c) Compute the two component qubits for the valid system and the probability of measuring $|0\rangle$ for each of them.

Exercise 6 (4 points) – Quantum circuits

Consider the two-qubit transformations U based on gates $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$ shown below

- Show what transformations U represents, writing the associated 4x4 matrices.
- Show how U acts on the state represented by the statevector $\left[\frac{1}{2}; \frac{i}{2\sqrt{3}}; -\frac{i}{\sqrt{2}}; \frac{\sqrt{2}}{2\sqrt{3}}i\right]$.