Intensive Computation Prof. A. Massini

18 June 2024

-	Student's Name	-	
-	<i>Matricola</i> numbe	er -	

Exercise 1 (7 points)	
Exercise 2 (6 points)	
Exercise 3 (4 points)	
Exercise 4 (6 points)	
Exercise 5 (5 points)	
Exercise 6 (4 points)	
Total (32 points)	

Exercise 1 (7 points)

Consider the sparse matrix here below, whose pattern is shown on the right.

	1	2	3	4	5	6	7	8	9	10	11	12
	-						,					
1	16.9	19.1	0	12.8	1.25	0	0	0	0	0	0	0
2	19.1	25.5	13.2	21.9	0	25.5	0	0	0	0	0	0
3	9.9	13.2	9.56	0	9.5	1.13	13.9	0	0	0	0	0
4	0	0	0	18.4	12.9	8.2	4.5	0	2.7	0	0	0
5	0	0	0	12.9	1.1	6.1	0	1.2	3.9	0	0	0
6	0	0	0	0	6.1	4.6	0	2.7	3.9	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	16.3	0	12.8	0	9.5
11	0	0	0	0	0	0	12.5	24.9	0	16.3	22.9	0
12	0	0	0	0	0	0	18.4	22.5	25.5	17.7	25.5	13.9

- a) Explain which arrays you need for the following representations, specifying their role and elements they contain.
- b) Specify how many bytes the arrays occupy in memory.
- c) Explain how arrays change after the deleting the elements $m_{2,6}$ and $m_{10,8}$ and what the new memory occupation is corresponds to.
- d) Explain how arrays change after inserting the elements $m_{9,10}$ =9,35 $m2_{8,10}$ =27,81 and what the new memory occupation corresponds to.

Ellpack-Itpack	

diag	

Exercise 2 (6 points) – Interconnection Networks

- a) Design a Clos network of size 225 x 225, using modules having **20 inputs in the first and middle stages** (the third stage is symmetrical to the first for the number of inputs and outputs). Specify the size and the number of switches for each stage. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compute the cost of the crossbar 225 x 225, the cost of the Clos networks strictly non-blocking and rearrangeable non-blocking designed in the previous point, and the cost of the Benes with 256 inputs. Which network is more advantageous?

Exercise 3 (4 points) – Interconnection networks							
Explain how an Extended Generalized Fat Tree is made and show the representation of the XGFT(3; 2, 4, 2; 2, 4, 1).							

Exercise 4 (5 points) - Quantum circuits

Consider the two-qubit transformations U shown below:

where
$$\mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 and $\mathbf{V} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$.

- a) Show what transformation U represents writing the associated 4x4 matrix.
- b) Show if U is unitary.
- c) Show how U acts on the system state $|\psi_1\psi_2\rangle$, where $|\psi_1\rangle=\frac{\sqrt{2}}{\sqrt{3}}|0\rangle-\frac{\sqrt{3}}{3}i|1\rangle$ and $|\psi_2\rangle=\frac{2}{6}|0\rangle+\frac{1}{\sqrt{3}}i|1\rangle$.

Exercise 5 (5 points) – Interconnection Networks								
a)	Complete the scheme of the Baseline network of size N=8 and show if it can realize permutation $P = \begin{pmatrix} 01 & 23 & 45 & 67 \\ 54 & 12 & 07 & 36 \end{pmatrix}$, showing the switch setting obtained using the self-routing algorithm.							
	(54 12 07 36)	, showing the	switch setting	g obtained usi	ing the self-ro	uting algorithm.		
b)	•		•	•			w how it can realize the	
	permutation P	using the Loo	ping algorithin	n. Snow now t	ine algorithm	proceeds in the	diagram below.	

Exercise 6 (4 points) – Quantum computing

Briefly explain what entanglement is and which gates you can	use to	realize it.
--	--------	-------------