Prof. A. Massini 6 June 2024 End-of-term test - Student's Name - Matricola number -

Intensive Computation

Exercise 1 (6 points)	
Exercise 2 (6 points)	
Exercise 3 (4 points)	
Exercise 4 (6 points)	
Exercise 5 (5 points)	
Exercise 6 (5 points)	
Total (32 points)	

Exercise 1 (6 points) – Interconnection Networks

- a) Design a Clos network of size 250 x 250, using modules having **12 inputs in the first and middle stages** (the third stage is symmetrical to the first for the number of inputs and outputs). Specify the size and the number of switches for each stage. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compare the cost of the crossbar 250 x 250 and the Clos networks strictly non-blocking and rearrangeable designed in the previous point.
- c) Compare the cost of the Benes with 256 inputs and the Clos networks strictly non-blocking and rearrangeable designed in point a).

b) Complete the scheme of the Butterfly and Shuffle networks of size N=8 and show if they can realize permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.	Exe	Exercise 2 (6 points) – Interconnection Networks	
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.	a)	a) Briefly explain how the self-routing algorithm works.	
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.			
permutation $P = \binom{01234567}{50274361}$, showing the switch setting obtained using the self-routing algorithm.	b)	b) Complete the scheme of the Butterfly and Shuffle networks of size N=8 a	and show if they can realize
c) Briefly explain how the Looping algorithm works. d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation	•		
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation		(50274361), showing the switch setting obtained using the	
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
d) Complete the scheme of the Benes network of size N=8 below and show how it can realize the permutation			
	c)	c) Briefly explain how the Looping algorithm works.	
P using the Looping algorithm. Show how the algorithm proceeds in the diagram below.	d)		
		P using the Looping algorithm. Show how the algorithm proceeds in the diagram	m below.

Exercise 3	3 (4 points) – Interco	onnection networ	·ks				
	ow an Extended Gen			nd show the re	epresentation of	of the XGFT(3; 2	, 4, 2; 2, 4, 2)

Exercise 4 (6 points) – Sparse matrices

Diag

Consider the sparse matrix 15x15 and its pattern shown here below

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1,571	0	-94,252	0,785	-283	0	0	0	0	0	0	0	0	0	0
2	0	256	0	-6,28	314,17	-942,52	0	0	0	0	0	0	0	0	0
3	0	0	0,609	94,252	0,785	0	0	0	0	0	0	0	0	0	0
4	-94,252	0	0	508,4	0	-754,02	0	0	0	0	0	0	0	0	0
5	0,785	3,142	0	0	0	0	0	-42,52	0,785	0	0	0	0	0	0
6	-83	0	256	0	0	0	0	-28	0	0	0	0	0	0	0
7	0	0	0	-0,304	0	0	0,609	-0,304	94,258	0	0	0	0	0	0
8	0	0	0	-754,02	-94,25	0	0	154,5	-75,022	0	0	0	0	0	0
9	0	0	0	0	0,609	94,252	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	-0,304	0,609	0	0	0	0
14	0	150,45	94,252	0	0	0	0	0	0	0	942,52	0,785	0	314,17	0,785
15	-40,2	-94,252	0	0	0	0	0	0	0	0	0	942,52	0,785	157,08	0

- a) Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.
- b) Explain how arrays change after the deleting the elements $m_{14,2}$, and $m_{14,3}$ and what the new memory occupation corresponds to.
- c) Explain how arrays change after inserting the elements $m_{10,11}$ =75,35 $m_{21,10}$ =92,81 and what the new memory occupation corresponds to.

_
_
_
_
_

BSR

Exercise 5 (5 points) – Quantum systems

- a) Consider the two-qubit system state $|\psi_1\psi_2\rangle$, where $|\psi_1\rangle=\frac{\sqrt{3}}{3}|0\rangle-\frac{\sqrt{6}}{3}i|1\rangle$ and $|\psi_2\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{\sqrt{3}}{\sqrt{6}}i|1\rangle$ and give the state vector representing it.
- b) Compute the probability of measuring $|11\rangle$ and the probability of measuring $|10\rangle$.

Exercise 6 (5 points) - Quantum circuits

Consider the two-qubit transformations U shown below:

where
$$\mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 and $\mathbf{V} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$.

- a) Show what transformation U represents writing the associated 4x4 matrix.
- b) Show if U is unitary.
- c) Show how U acts on the state $|01\rangle$ and on the state represented by the statevector $\left[\frac{i}{2}; 0; \frac{1}{2}; \frac{\sqrt{2}}{2}i\right]$.