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One-Qubit gates

Exercises

• Verify that all gates introduced so far are their own inverse

• Verify that you can create an X-gate by sandwiching a Z-gate 
between two H-gates, that is 𝑋 = 𝐻𝑍𝐻

• Starting in the Z-basis, the H-gate switches our qubit to the X-basis, the 
Z-gate performs a NOT in the X-basis, and the final H-gate returns our 
qubit to the Z-basis
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One-Qubit gates: the Pauli gates 

Exercises - solutions

• Verifying 𝑿, 𝒀, 𝒁,𝑯 are their own inverse 

• 𝑋𝑋 =
0 1
1 0

0 1
1 0

=
1 0
0 1

• 𝑌𝑌 =
0 −𝑖
𝑖 0

0 −𝑖
𝑖 0

= −𝑖2 0
0 −𝑖2

=
1 0
0 1

• 𝑍𝑍 =
1 0
0 −1

1 0
0 −1

=
1 0
0 1

• 𝐻𝐻 =
1

2

1 1
1 −1

1

2

1 1
1 −1

=
1

2

2 0
0 2

=
1 0
0 1

• Verifying 𝑯𝒁𝑯 behaves like an X-gate 

• 𝐻𝑍𝐻 =
1

2

1 1
1 −1

1 0
0 −1

1

2

1 1
1 −1

=
1

2

0 2
2 0

=
0 1
1 0

= 𝑋
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One-Qubit gates: Arbitrary rotations

• There are three gates that allow to do an arbitrary rotation 
around the x, y and z axis, respectively

• These operators are 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧, and are defined as:

𝑅𝑥(𝜃) =
cos

𝜃

2
−𝑖 sin

𝜃

2

𝑖 sin
𝜃

2
cos

𝜃

2

𝑅𝑦(𝜃) =
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

𝑅𝑧(𝜑) =
1 0
0 𝑒𝑖𝜑

• Notice that while 𝑅𝑥 and 𝑅𝑦 change the probabilities of the 

system states, 𝑅𝑧 does not (i.e. the probability of measuring ȁ ۧ0
rather than ȁ ۧ1 remains the same)

• What 𝑅𝑧 changes is the relative phase of the qubit
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One-Qubit gates: Arbitrary rotations

• 𝑅𝑧 performs a rotation of 𝜑 around the Z-axis direction and 
changes the relative phase of the qubit

• 𝑅𝑧 is a parametrized gate and is also called P-gate

• It needs a real number 𝜑 to tell it exactly what to do

• Notice that the Z-gate, that is  𝑍 = 1 0
0 −1

, is a special case of 

the P-gate 𝑃 =
1 0
0 𝑒𝑖𝜑

, with 𝜑 = 𝜋:

𝑍 =
1 0
0 −1

=
1 0
0 𝑒𝑖𝜋

(Remember that the action of the Z-gate is a rotation around the 
z-axis of π radians, that is 180°)
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One-Qubit gates: the S-gate

• The S-gate, also known as 𝑍-gate, is a P-gate with 𝜑 = Τ𝜋 2
around the Z-axis direction

• The S-gate does a quarter-turn around the Bloch sphere

• The matrice is: 𝑆 =
1 0

0 𝑒𝑖
𝜋

2

• The name 𝑍-gate is due to the fact that two successively 
applied S-gates has the same effect as one Z-gate: 

𝑆𝑆ȁ ۧ𝑞 =
1 0

0 𝑒𝑖
𝜋
2

1 0

0 𝑒𝑖
𝜋
2
ȁ ۧ𝑞 =

1 0
0 𝑒𝑖𝜋

ȁ ۧ𝑞 = 𝑍ȁ ۧ𝑞
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One-Qubit gates: the S-gate

• Unlike other gates introduced so far, the S-gate is not its own 
inverse

• Hence, we can have 𝑆†-gate (or 𝑍
†

-gate)

• The 𝑆†-gate is clearly a P-gate with 𝜑 = Τ−𝜋 2

• The matrix is: 𝑆† =
1 0

0 𝑒−𝑖
𝜋

2

• It holds

𝑆𝑆† =
1 0

0 𝑒𝑖
𝜋
2

1 0

0 𝑒−𝑖
𝜋
2
=

1 0

0 𝑒𝑖(
𝜋
2
−
𝜋
2
) =

1 0
0 1

This confirms that is S is a unitary matrix
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One-Qubit gates: the T-gate

• The T-gate is a P-gate with  𝜙 = Τ𝜋 4

• The matrices are: 𝑇 =
1 0

0 𝑒𝑖
𝜋

4
and 𝑇† =

1 0

0 𝑒−𝑖
𝜋

4

• As with the S-gate, the T-gate is sometimes also known as 

the 
4
𝑍-gate
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One-Qubit gates: the U-gate

• The U-gate is the most general of all single-qubit quantum 
gates  and is a parametrised gate of the form:

𝑈(𝜃, 𝜙, 𝜆) =
cos

𝜃

2
−𝑒𝑖𝜆 sin

𝜃

2

𝑒𝑖𝜙 sin
𝜃

2
𝑒𝑖(𝜙+𝜆) cos

𝜃

2

• Every gate could be specified as 𝑈(𝜃, 𝜙, 𝜆), but it is unusual to 
see this in a circuit diagram

• As an example, we see the U-gate for representing the H-gate
and P-gate respectively

𝐻 = 𝑈(
𝜋

2
, 0, 𝜋) =

1

2

1 1
1 −1

and   P = 𝑈 0,0, 𝜆 =
1 0
0 𝑒𝑖𝜆
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MULTI-QUBIT GATES
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Multi-Qubit gates

• Among the multiple-qubit gates, there is a wide range of gates 
which is based on the same principle: controlled gates

• A given number of control qubits decide if a given operation 
must be performed on another set of qubits or not

• In the case of a two-qubit, there is one control qubit and one 
target qubit
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Multi-Qubit gates: CNOT gate

• An important two-qubit gate is the CNOT-gate

• It is a conditional gate that performs an X-gate on the second 
qubit, target bit, if the state of the first qubit, control bit is ȁ ۧ𝟏

• In the picture q1 is the control and q0 is the target
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Multi-Qubit gates: CNOT gate

• The matrix of the CNOT gate is

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

• This matrix swaps the amplitudes of ȁ ۧ𝟏𝟎 and ȁ ۧ𝟏𝟏 in the 
statevector:

ȁ ۧ𝑎 =

𝑎00
𝑎01
𝑎10
𝑎11

CNOTȁ ۧ𝑎 =

𝑎00
𝑎01
𝑎11
𝑎10
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Multi-Qubit gates: CNOT gate

• The controlled-NOT, or CNOT, is a reversible gate and perform 
the XOR, as shown in the true table below

• The second bit, or target bit, is flipped if and only if the first bit 
is set to one and therefore 𝑏′ = 𝑎 ⊕ 𝑏
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Multi-Qubit gates: CNOT gate

• Note that, if we set the target bit to 0, the CNOT gates 
becomes the FANOUT gate: 𝑎, 0 → (𝑎, 𝑎)

• It is easy to check that CNOT is self-inverse: 

• Indeed, the application of two CNOT gates, leads to

𝑎, 𝑏 → 𝑎, 𝑎 ⨁𝑏 → 𝑎, 𝑎⨁ 𝑎⨁𝑏 = (𝑎, 𝑏)

• Therefore, (CNOT)2 = I, that is CNOT-1 = CNOT
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Multi-Qubit gates: Controlled gates

Generic controlled gates

• It is possible to define the operation performed by the generic 
single-qubit gate U by using the generic matrix

𝑈 =
𝑢00 𝑢01
𝑢10 𝑢11

• Assuming that the action of U on the target qubit must be taken 
only if the first qubit is equal to ȁ ۧ1 , for the controlled-U gate it 
holds that:

CNOT 𝑈 = 𝑐𝑈 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

• All the single qubit gates previously presented can be theoretically 
implemented in the controlled version
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Multi-Qubit gates: Controlled gates

• We can write the action for all the four possible input patterns

𝒄𝑼ȁ ۧ𝟎𝟎 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

1
0
0
0

=

1
0
0
0

= ȁ ۧ00 𝒄𝑼ȁ ۧ𝟎𝟏 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
1
0
0

=

0
1
0
0

= ȁ ۧ01

𝒄𝑼ȁ ۧ𝟏𝟎 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
0
1
0

=

0
0
𝑢00
𝑢10

= ห ۧ1 ⊗ 𝑈ȁ ۧ0

𝒄𝑼ȁ ۧ𝟏𝟏 =

1 0
0 1

0 0
0 0

0 0
0 0

𝑢00 𝑢01
𝑢10 𝑢11

0
0
0
1

=

0
0
𝑢01
𝑢11

= ห ۧ1 ⊗ 𝑈ȁ ۧ1
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Multi-Qubit gates: Swap gate

• The Swap gate allows to swap two qubits

• It is defined as follows:

𝑆𝑊𝐴𝑃 =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

• In general, the action is:  ȁ ۧ𝜓′ = 𝑆𝑊𝐴𝑃ȁ ۧ𝜓 =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

𝑎
𝑏
𝑐
𝑑

=

𝑎
𝑐
𝑏
𝑑

• The SWAP gate is that it can be implemented, for example, using 
three CNOT gates
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Multi-Qubit gates: CCNOT gate

• It is possible to show that two-bit reversible gates are not 
enough for universal computation 

• Instead, a universal gate is the controlled-controlled-NOT
(CCNOT) or Toffoli gate, which is a three-bit gate

• The Toffoli gate has two control qubits and one target qubit

• The X operation is applied to the target qubit if and only if both 
control qubits are set to ȁ ۧ1
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Multi-Qubit gates: CCNOT gate

• The CCNOT gate acts as follows: 

• the two control bits are unchanged, that is  a' = a and b’ = b

• the target bit is flipped if and only if the two control bits are set to 
1, that is  c’ = c xor ab 

Table and circuit of the CCNOT
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Multi-Qubit gates: CCNOT gate

• The CCNOT gate (Toffoli gate) is universal

• To prove the CCNOT universality, we show how to use it to 
construct both NAND and FANOUT gates
• If we set a = 1, the Toffoli gate acts on the other two bits as a CNOT and 

we have seen that the FANOUT gate can be constructed from the CNOT

• Since 𝑐′ = 𝑐 ⊕ 𝑎𝑏 = ҧ𝑐 𝑎𝑏 + 𝑐 𝑎𝑏, if we set 𝑐 = 1, then 𝑐′ = 1⊕ 𝑎𝑏 =
0 𝑎𝑏 + 1 𝑎𝑏 = 𝑎𝑏

• It is possible to construct the NOT, AND, OR gates from the 
Toffoli gate
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Multi-Qubit gates: CSWAP gate

• Another universal reversible gate is the controlled-EXCHANGE 
gate or CSWAP gate or Fredkin gate 

• The SWAP operation is performed if and only if the control bit a 
is set to 1 and the two target qubits b and c e are swapped

Table and circuit of the controlled-EXCHANGE
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Multi-Qubit gates

• Both the Toffoli and Fredkin gates are self-inverse

• The price to pay to have reversible gates is the introduction of 
additional qubits and on output this produces garbage qubits

• Garbage bits

• are not reused during the computation

• are needed to store the information that would allow us to 
reverse the operations

• For instance, if we set c = 1 at the input of the Toffoli gate, we 
obtain 𝑐′ = 𝑎𝑏 plus two garbage bits 𝑎′ = 𝑎 and 𝑏′ = 𝑏
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HOW TO ANALYZE

QUANTUM CIRCUITS
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Analyzing a quantum circuit

• Quantum operators are described by means of unitary 
matrices

• A quantum circuit can be seen as set of gates connected to 
each other, where each gate is represented by a unitary matrix

• There can be two kinds of connections between gates 
belonging to the same circuit: series and parallel connections

• To understand the behavior of a given circuit, it is necessary to 
understand how to compute the overall unitary matrix 
describing the action of gates placed in parallel or in series
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Analyzing a quantum circuit

• The time-flow in a circuit is represented from left to right

• This means that the evolution of the state of a qubit has a 
physical meaning if considered from left to right

• However, when the matrix transfer function of the whole (or a 
part of the) circuit has to be computed, unitary matrices must 
be written from right to left

• The leftmost gate in the circuit is described by the rightmost 
unitary matrix
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Analyzing a quantum circuit

Gates Connected in Series

• The overall transfer function of two generic one-qubit quantum 
gates connected in series can be computed as shown in the 
figure below

• The output after the input passed through gate A and B is:
ȁ ۧ𝝍 = 𝑩𝑨ȁ ۧ𝝍

• The method can be extended to an arbitrary number of gates
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Analyzing a quantum circuit

Gates Connected in Parallel

• When two gates are placed in parallel, the overall unitary 
matrix acting on the two qubits is obtained using the 
Kronecker product, as shown in the figure below

• The output after the inputs passed through gates A and B is:
𝑨ȁ ۧ𝝍𝟏 ⊗𝑩ȁ ۧ𝝍𝟐 = 𝑨⊗𝑩 ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 = 𝑨⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐

• The method can be extended to an arbitrary number of gates

Intensive Computation - 2022/2023 30



One-Qubit gates on multi-Qubit

Example

• We have that a single bit gate acts on a qubit in a multi-qubit 
vector using the tensor product to calculate matrices that act 
on multi-qubit statevectors

• For example, if on 𝑞1 acts the X-gate (NOT) and on 𝑞0 acts the 
H-gate we can represent the simultaneous operations X and H 
using their Kronecker product: 

𝑋ȁ ۧ𝑞1 ⊗𝐻ȁ ۧ𝑞0 = 𝑋⊗𝐻 ȁ ۧ𝑞1𝑞0
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One-Qubit gates on multi-Qubit

• The operation 𝑋ȁ ۧ𝑞1 ⊗𝐻ȁ ۧ𝑞0 = 𝑋⊗𝐻 ȁ ۧ𝑞1𝑞0 is given by:

𝑋⊗𝐻 =
0 1
1 0

⊗
1

2

1 1
1 −1

=

=
1

2

0 ×
1 1
1 −1

1 ×
1 1
1 −1

1 ×
1 1
1 −1

0 ×
1 1
1 −1

=
1

2

0 0
0 0

1 1
1 −1

1 1
1 −1

0 0
0 0

=
0 𝐻
𝐻 0

Intensive Computation - 2022/2023 32



Analyzing a quantum circuit

Gates Connected in Parallel

• If gates are applied only to a subset of the inputs, qubits where 
no gates are acting can be treated as operated by an identity, 
as shown in the figure below

• The output after the inputs passed through gate B is:
ȁ ۧ𝝍𝟏 ⊗𝑩ȁ ۧ𝝍𝟐 = 𝑰⊗𝑩 ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 = 𝑰⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐
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One-Qubit gates on multi-Qubit

Example

• We need to apply a gate to only one qubit at a time, such as in 
the circuit below where on 𝑞1 acts the X-gate (NOT)

• In such a case, we describe the operation using Kronecker
product with the identity matrix, e.g.: 𝑋 ⊗ 𝐼, giving

𝑋⊗ 𝐼 =

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

=
0 𝐼
𝐼 0
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Example of a circuit

• Let us consider the following circuit, where A, B, C and D 
represent generic gates

• To analyze this circuit, two steps have to be followed
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Example of a circuit

1) Write a unique expression for the three input qubits by 
performing the tensor product among them:

ȁ ۧ𝝍𝟏 ⊗ ȁ ۧ𝝍𝟐 ⊗ ȁ ۧ𝝍𝟑 = ȁ ۧ𝝍𝟏𝝍𝟐𝝍𝟑

2) Compute the overall matrix function considering the gates  
from right to left (where 𝑰𝒌 is the identity matrix of order 𝑘):

ȁ ۧ𝝍𝒐𝒖𝒕 = (𝑰𝟐 ⊗𝑫⊗ 𝑰𝟐) ⋅ (𝑪⊗ 𝑰𝟒) ⋅ 𝑨⊗ 𝑰𝟐 ⊗𝑩 ȁ ۧ𝝍𝟏𝝍𝟐𝝍𝟑
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Example of a circuit

• The step-by-step analysis is shown here below
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Example with H and CNOT gates

• In real quantum circuit analysis, we can follow two different
strategies:

• Exploiting the matrix calculation, as done before

• Adopting a method based on truth tables of different gates, 
that can be faster

• Let us consider the circuit below
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Example with H and CNOT gates

Matrix multiplication

• In this circuit we have two operators: the Hadamard gate and 
the CNOT gate, represented by the two unitary matrices

H =
1

2

1 1
1 −1

CNOT =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

• We compute ȁ ۧ𝑞1 , ȁ ۧ𝑞2 and ȁ ۧ𝑞3 corresponding to the values
shown in the figure

Intensive Computation - 2022/2023 39

ȁ ۧ0

ȁ ۧ0

ȁ ۧ𝑞1 ȁ ۧ𝑞2 ȁ ۧ𝑞3



Example with H and CNOT gates

Matrix multiplication

• ȁ ۧ𝑞1 =ȁ ۧ0 ⊗ ȁ ۧ0 = ȁ0 ۧ0 =

1
0
0
0

• ȁ ۧ𝑞2 = 𝐻⊗ 𝐼 ȁ0 ۧ0 =
1

2

1 1
1 −1

⊗
1 0
0 1

1
0
0
0

=

1

2

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

1
0
0
0

=
1

2

1
0
1
0

=
1

2
(ȁ ۧ00 + ȁ ۧ10 )
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Example with H and CNOT gates

Matrix multiplication

• ȁ ۧ𝑞3 =𝐶𝑁𝑂𝑇 ⋅
1

2
ȁ ۧ00 + ȁ ۧ10 =

=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1

2

1
0
1
0

=
1

2

1
0
0
1

=

=
1

2
(ȁ ۧ00 + ȁ ۧ11 )
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Example with H and CNOT gates

Truth tables

• This approach exploits the truth tables as shown here below
for the involved operators

• It is typically much quicker to apply than the matrix method 
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Hadamard CNOT

𝐻ȁ ۧ0 =
1

2
(ȁ ۧ0 + ȁ ۧ1 ) = ȁ ۧ+ CNOTȁ ۧ0𝑥 = ȁ ۧ0𝑥

𝐻ȁ ۧ1 =
1

2
(ȁ ۧ0 − ȁ ۧ1 ) = ȁ ۧ− CNOTȁ ۧ1𝑥 = ȁ ۧ1 ҧ𝑥



Example with H and CNOT gates

Truth tables

• ȁ ۧ𝑞1 =ȁ ۧ0 ⊗ ȁ ۧ0 = ȁ0 ۧ0

• ȁ ۧ𝑞2 = 𝐻ȁ ۧ0 ⊗ ȁ ۧ0 =
1

2
(ȁ ۧ0 + ȁ ۧ1 ) ⊗ ȁ ۧ0 =

1

2
(ȁ ۧ00 + ȁ ۧ10 )

• ȁ ۧ𝑞3 =𝐶𝑁𝑂𝑇 ⋅
1

2
ȁ ۧ00 + ȁ ۧ10 =

1

2
𝐶𝑁𝑂𝑇ȁ ۧ00 + 𝐶𝑁𝑂𝑇ȁ ۧ10 =

=
1

2
(ȁ ۧ00 + ȁ ۧ11 )
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Example with H and CNOT gates

• We can look at this circuit also in a different way

• Applying the H gate to ȁ ۧ0 we obtain state ȁ ۧ+

Hȁ ۧ0 =
1

2

1 1
1 −1

1
0

=
1

2

1
1

=
1

2
(ȁ ۧ0 + ȁ ۧ1 ) = ȁ ۧ+
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Example with H and CNOT gates

• So, we can see how CNOT gate acts on a qubit in superposition 
given by  the state ȁ ۧ+

• Before we apply the CNOT we have

ȁ ۧ+0 = ȁ ۧ+ ⊗ ȁ ۧ0 = Hȁ ۧ0 ⊗ ȁ ۧ0 =
1

2

1
1
⊗

1
0

=
1

2

1 ×
1
0

1 ×
1
0

=
1

2

1
0
1
0

=
1

2

1
0
0
0

+

0
0
1
0

=
1

2
(ȁ ۧ00 + ȁ ۧ10 )
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Example with H and CNOT gates

• When we apply the CNOT gate, we have the state 

CNOTȁ ۧ+0 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

1

2

1
0
1
0

=
1

2

1
0
0
1

=
1

2

1
0
0
0

+

0
0
0
1

=
1

2
(ȁ ۧ00 + ȁ ۧ11 )
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Example with H and CNOT gates

• CNOTȁ ۧ+0 =
1

2
(ȁ ۧ00 + ȁ ۧ11 ) is one of the Bell states

• As we said, this state is interesting because it is entangled and 
it  has:

• 50% probability of being measured in the state ȁ ۧ00

• 50% chance of being measured in the state ȁ ۧ11

• And, most interestingly, 0% chance of being measured in the 
states ȁ ۧ01 or ȁ ۧ10

• This state cannot be written as two separate qubit states
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Example with H and CNOT gates

• Although our qubits are in superposition, measuring one will 
tell us the state of the other and collapse its superposition

• For example, if we measured the top qubit and got the state ȁ ۧ1
the collective state of our qubits changes like 

1

2
(ȁ ۧ00 + ȁ ۧ11 )

measure
ȁ ۧ11

• Even if we separated these qubits light-years away, measuring 
one qubit collapses the superposition and appears to have an 
immediate effect on the other
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NO CLONING THEOREM
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No-Cloning theorem

• Cloning – so easy to accomplish with classical information –
turns out not to be possible in general in quantum mechanics

• No-cloning theorem, discovered in the early 1980s, is one of 
the earliest results of quantum computation and quantum 
information

• Let’s try to build a circuit that makes a copy of a qubit’s state

• We’re looking for something like:
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No-Cloning theorem

• The initial state of 𝑞0 does not matter since it is a placeholder 
we want to replace with the state of 𝑞1

• We are not looking for a gate that clones one particular qubit 
state but rather one that makes a copy of any arbitrary state

• If the CLONE gate exists, let C be its unitary matrix in the 
standard ket basis 

• As usual, we take: ȁ ۧ𝜓 = 𝑎ȁ ۧ0 + 𝑏ȁ ۧ1
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No-Cloning theorem

• The result after cloning is: ȁ ۧ𝜓 ⨂ȁ ۧ𝜓

• That is:  𝐶 ȁ ۧ𝜓 ⨂ȁ ۧ0 = ȁ ۧ𝜓 ⨂ȁ ۧ𝜓

• But, are these really equal?

• On the left we have:
𝐶 ȁ ۧ𝜓 ⨂ȁ ۧ0 = 𝐶( 𝑎ȁ ۧ0 + 𝑏ȁ ۧ1 )⨂ȁ ۧ0 =

= 𝐶(𝑎ȁ ۧ0 ⨂ȁ ۧ0 + 𝑏ȁ ۧ1 ⨂ȁ ۧ0 ) =
= 𝑎𝐶(ȁ ۧ0 ⨂ȁ ۧ0 ) + 𝑏𝐶(ȁ ۧ1 ⨂ȁ ۧ0 ) = by linearity

= 𝑎ȁ ۧ00 + 𝑏ȁ ۧ11 by definition of Clone and C
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No-Cloning theorem

• On the right we have:
ȁ ۧ𝜓 ⨂ȁ ۧ𝜓 = (𝑎ȁ ۧ0 + 𝑏ȁ ۧ1 )⨂(𝑎ȁ ۧ0 + 𝑏ȁ ۧ1 ) =

= 𝑎2ȁ ۧ00 + 𝑎𝑏ȁ ۧ01 + 𝑏𝑎ȁ ۧ10 + 𝑏2ȁ ۧ11

• For arbitrary 𝑎 and 𝑏 in ℂ with 𝑎 2 + 𝑏 2 = 1
𝑎ȁ ۧ00 + 𝑏ȁ ۧ11 ≠ 𝑎2ȁ ۧ00 + 𝑎𝑏ȁ ۧ01 + 𝑏𝑎ȁ ۧ10 + 𝑏2ȁ ۧ11

• Hence, there is no CLONE gate that can duplicate the quantum 
state of a qubit

• This is called the No-Cloning Theorem
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