Intensive Computation

Prof. A. Massini

9 June 2023

Part B

- Student's Name -
- Matricola number -

Exercise 1 (6 points)	
Exercise 2 (4 points)	
Exercise 3 (3 points)	
Exercise 4 (4 points)	
Exercise 5 (5 points)	
Exercise 6 (3 points)	
Exercise 7 (4 points)	
Question (3 points)	
Total (32 points)	

Exercise 1 (6 points) - Interconnection Networks

a) Design a Clos network of size 420×420, using modules having $\mathbf{2 4}$ inputs in the first and middle stages (whereas the third stage is symmetrical to the first), specifying the size and the number of switches for each stage. Consider both cases, strictly non-blocking and rearrangeable network.
b) Compare the cost of the crossbar 420×420 and the Clos network, strictly non-blocking and rearrangeable, designed in the previous point.
c) Compare the cost of a baseline network large enough to accommodate 420 inputs/outputs and the designed Clos network, strictly non-blocking and rearrangeable.

Exercise 2 (4 points) - Interconnection Networks

a) Complete the scheme of the Baseline and Butterfly networks of size $\mathrm{N}=8$ and show if they can realize permutation $P=\binom{01234567}{40527316}$, showing the switch setting obtained using the self-routing algorithm, and explaining how to do it.

b) Complete the scheme of the Butterfly-ReverseButterfly network of size $\mathrm{N}=8$ and show how it realizes the permutation $P=\binom{01234567}{40527316}$, using the Looping algorithm also explaining how to do it.

\square

Exercise 3 (3 points) - Interconnection networks

Explain how an Extended Generalized Fat Tree (XGFT) is organized and show the representation of XGFT(3; 4, 2, 2; 1, 4,1).
\qquad

Exercises 4 (4 points) Amdhal Law

The following measurements are recorded with respect to the different instruction classes for the instruction set running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	8	7
Load and store	6	3
Branch	6	6
Others	10	5

Assume that "Arithmetic and logic" instructions can be modified so that they take 5 cycle per instruction. Compute the speedup obtained by introducing this enhancement using the Amdhal law.

Then assume that "Branch" instructions can be modified so that they take 5 cycle per instruction. Compute the speedup obtained by introducing this enhancement using the Amdhal law.

Then, compute the speedup obtained if both "Arithmetic and logic" and "Branch" instructions are modified (taking both 5 cycles per instruction).

Exercises 5 (5 points) Performance equation

Suppose we have made the following measurements, where we are considering Arithmetic and logic instructions (A\&L) and the subset of only integer Multiplications and Divisions (MD):

Frequency of A\&L operations $=45 \%$
Average CPI of A\&L operations $=3$
Average CPI of other instructions $=2.2$
Frequency of $\mathrm{MD}=10 \%$
CPI of MD = 7
a) Assume that the two design alternatives are to decrease the CPI of $A \& L$ to 2.5 or to decrease the average CPI of all MD operations to 3.4. Compare these two design alternatives using the processor performance equation and give the speed-up in each case.
b) What would the speedup be if both enhancements were applied?

Exercise 6 (3 points) - Quantum circuits

a) Consider the two-qubit system state $\left|\psi_{1} \psi_{2}\right\rangle$, where $\left|\psi_{1}\right\rangle=\frac{\sqrt{6}}{3}|0\rangle-\frac{1}{\sqrt{3}} i|1\rangle$ and $\left|\psi_{2}\right\rangle=\frac{\sqrt{3}}{2}|0\rangle+$ $\frac{1}{2} i|1\rangle$ and give the state vector representing it.
a) Compute the probability of measuring $|01\rangle$ and the probability of measuring $|10\rangle$.

Exercise 7 (4 points) - Quantum circuits

Consider the following circuit.

a) Calculate the matrix of the circuit and verify it is unitary.
b) Show the effect when the circuit is applied on states $|00\rangle$ and $|10\rangle$.
c) Show the effect when the circuit is applied on state $\left|\psi_{1} \psi_{2}\right\rangle$, where $\left|\psi_{1}\right\rangle=\frac{\sqrt{6}}{3}|0\rangle-\frac{1}{\sqrt{3}} i|1\rangle$ and $\left|\psi_{2}\right\rangle=\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2} i|1\rangle$ (it is the same computed in exercise

Question (3 points) - Quantum circuits

Show which quantum gates you need to obtain the Bell states.

