Intensive Computation

Prof. A. Massini

9 June 2023

Part	В
------	---

-	Student's Name -	
-	Matricola number -	

Exercise 1 (6 points)	
Exercise 2 (4 points)	
Exercise 3 (3 points)	
Exercise 4 (4 points)	
Exercise 5 (5 points)	
Exercise 6 (3 points)	
Exercise 7 (4 points)	
Question (3 points)	
Total (32 points)	

Exercise 1 (6 points) - Interconnection Networks

- a) Design a Clos network of size 420 x 420, using modules having **24 inputs in the first and middle stages** (whereas the third stage is symmetrical to the first), specifying the size and the number of switches for each stage. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compare the cost of the crossbar 420 x 420 and the Clos network, strictly non-blocking and rearrangeable, designed in the previous point.
- c) Compare the cost of a baseline network large enough to accommodate 420 inputs/outputs and the designed Clos network, strictly non-blocking and rearrangeable.

Exercise 2 (4 points) – Interconnection Networks

a)							w if they can reali	
	permutation $P =$ explaining how to), showing t	he switch set	ting obtained	using the self-ro	outing algorithm, a	nd
	explaining now to	o do it.						
b)	Complete the sc	heme of the	Butterfly-Rev	verseButterfly	network of si	ze N=8 and show	w how it realizes t	he
	permutation $P =$							

Exercise 3 (3 points) – Interconnection networks			
Explain how an Extended Generalized Fat Tree (XGFT) is organized and show the representation of XGFT(3; 4, 2, 2; 1, 4, 1).			

Exercises 4 (4 points) Amdhal Law

The following measurements are recorded with respect to the different instruction classes for the instruction set running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Arithmetic and logic	8	7
Load and store	6	3
Branch	6	6
Others	10	5

Assume that "Arithmetic and logic" instructions can be modified so that they take 5 cycle per instruction. Compute the speedup obtained by introducing this enhancement using the **Amdhal law**.

Then assume that "Branch" instructions can be modified so that they take 5 cycle per instruction. Compute the speedup obtained by introducing this enhancement using the **Amdhal law**.

Then, compute the speedup obtained if both "Arithmetic and logic" and "Branch" instructions are modified (taking both 5 cycles per instruction).

Exercises 5 (5 points) Performance equation

Suppose we have made the following measurements, where we are considering Arithmetic and logic instructions (A&L) and the **subset** of only integer Multiplications and Divisions (MD):

Frequency of A&L operations = 45% Average CPI of A&L operations = 3 Average CPI of other instructions = 2.2 Frequency of MD = 10% CPI of MD = 7

- a) Assume that the two design alternatives are to decrease the CPI of A&L to 2.5 or to decrease the average CPI of all MD operations to 3.4. Compare these two design alternatives using the processor performance equation and give the speed-up in each case.
- b) What would the speedup be if both enhancements were applied?

Exercise 6 (3 points) - Quantum circuits

- a) Consider the two-qubit system state $|\psi_1\psi_2\rangle$, where $|\psi_1\rangle=\frac{\sqrt{6}}{3}|0\rangle-\frac{1}{\sqrt{3}}i|1\rangle$ and $|\psi_2\rangle=\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}i|1\rangle$ and give the state vector representing it.
- a) Compute the probability of measuring $|01\rangle$ and the probability of measuring $|10\rangle$.

Exercise 7 (4 points) - Quantum circuits

Consider the following circuit.

- a) Calculate the matrix of the circuit and verify it is unitary.
- b) Show the effect when the circuit is applied on states $\,|00\rangle$ and $|10\rangle.$
- c) Show the effect when the circuit is applied on state $|\psi_1\psi_2\rangle$, where $|\psi_1\rangle=\frac{\sqrt{6}}{3}|0\rangle-\frac{1}{\sqrt{3}}i|1\rangle$ and $|\psi_2\rangle=\frac{\sqrt{3}}{2}|0\rangle+\frac{1}{2}i|1\rangle$ (it is the same computed in exercise

Question (3 points) – Quantum circuits

Show which quantum gates you need to obtain the Bell states.