Intensive Computation

Prof. A. Massini

April 17, 2023

Midterm test		
Student's Name		
Matricola number		

Exercise 1 (5 points)	
Exercise 2 (3 points)	
Exercise 3 (3 points)	
Exercise 4 (5 points)	
Exercise 5 (4 points)	
Exercise 6 (5 points)	
Question (4 points)	
Exercise 7 (3 points)	
Total (32 points)	

Exercise 1 (5 points) - GPU & CUDA

Technical specifications	Compute capability (version)									
	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2
Maximum dimensionality of grid of thread blocks			2				3			
Maximum x-dimension of a grid of thread blocks			6553	5				2^{31} -1		
Maximum y-, or z-dimension of a grid of thread blocks					655	35				
Maximum dimensionality of thread block	3									
Maximum x- or y-dimension of a block	512 1024									
Maximum z-dimension of a block	64									
Maximum number of threads per block	512 1024									
Warp size	32									
Maximum number of resident blocks per multiprocessor		8 16							3	2
Maximum number of resident warps per multiprocessor	2	24 32 48 64								
Maximum number of resident threads per multiprocessor	768 1024 1536 2048									
Technical specifications	1.0	1.1	1.2	1.3	2.x	3.0	3.5	3.7	5.0	5.2
	Compute capability (version)									

Consider a tridimensional matrix of size 1200x1200x1200. You would like to assign one thread to each matrix element.

- a) How would you select the **3D** grid dimensions and **3D** cubic block dimensions of your kernel to minimize the number of idle threads on a device having compute capability 3.0?
- b) How would you select the 3D block dimensions of your kernel if you want tridimensional blocks of maximum size and you do not need blocks are cubic, on a device having compute capability 3.0?

Exercise 2 (3 points) - GPU & CUDA

A CUDA device's SM (Streaming Multiprocessor) can take up to 2048 threads and up to 8 thread blocks. Which of the following block configuration would result in the most number of threads in the SM?

- (A) 128 threads per block
- (B) 256 threads per block
- (C) 512 threads per block
- (D) 1024 threads per block

Give a comment for each answer.

Exercise 3 (3 points) - Pipeline

Consider an architecture where each instruction (unpipelined) takes 98 ns. Consider the pipeline implementation of instructions taking 105 ns, using 7 pipe stages.

- i) Compute the time required to execute 80 instructions without and with pipeline.
- ii) Compute the speedup of the pipelined solution with respect to the unpipelined one (for 80 instructions).

Exercise 4 (5 points) - Number representation

- Represent the natural number range [0; 790] using the residue number system, considering:
 - * the conventional choice consisting of 3 moduli S1={2ⁿ -1; 2ⁿ; 2ⁿ+1}
 - * a moduli set consisting of 3 moduli at your choice S2.
- Give an estimation of the representational efficiency in both cases.
- Represent A= 25 in both residue systems S1 and S2 defined and in the mixed radix representation associated.

Exe	rcise 5 (4 points) – Number representation
a)	Given the values A= 00 11 10 01 11 and B = 00 10 10 11 01 in the signed RB (Redundant Binary) representation, convert A and B in decimal.
b)	Show the execution of operation A-B using the look-up table for addition. Verify the correctness of the result.

Exercise 6 (6 points)

a) Consider the sparse matrix here below, whose pattern is shown on the right.

	1	2	3	4	5	6	7	8	9	10	11	12	0		-	-		1		,		,		T.
1	16.9	19.1	0	12.8	1.25	0	0	0	0	0	0	0		•	•	•	•							
2	19.1	25.5	13.2	21.9	0	25.5	0	0	0	0	0	0	2											
3	9.9	13.2	9	0	9.5	1.13	13.9	0	0	0	0	0	4	-	8.7	•			•		•			ur.
4	0	0	0	18.4	12.9	8.2	4.5	0	2.7	0	0	0					•	•		•	•			
5	0	0	0	12.9	1.1	6.1	0	1.2	3.9	0	0	0	6				•	•		•	•			3
6	0	0	0	0	6.1	4.6	0	2.7	3.9	0	0	0												
7	0	0	0	0	0	0	0	0	0	0	0	0	8											
8	0	0	0	0	0	0	0	0	0	0	0	0												
9	0	0	0	0	0	0	0	0	0	0	0	0	10	*1						•		•		•
10	0	0	0	0	0	0	0	16.3	0	12.8	0	9.5							•	•		•	•	
11	0	0	0	0	0	0	12.5	24.9	0	16.3	22.9	0	12	-					•	•	•	•	•	•
12	0	0	0	0	0	0	18.4	22.5	25.5	17.7	25.5	13.9	C)	2	4		6		8		10		12
																		nz =	= 42					

Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.

BSR			
Skyline			

b) Explain how arrays change after the insertion of element $m_{8,8} \!\!=\!\! 1.3$ a	and what is the new memory occupation.
BSR	
Skyline	
c) Explain what operations must be executed for deleting element $m_{4,}$ BSR	,6
Skyline	

Question (4 points) Briefly describe the main characteristics of the vector architectures.