Intensive Computation

Prof. A. Massini

4 July 2022

Part 2
- Student's Name -
- Matricola number -
- Watricola number -

Exercise 1 (5 points)	
Exercise 2 (5 points)	
Question 1 (5 points)	
Exercise 3 (6 points)	
Question 2 (5 points)	
Exercise 4 (6 points)	
Total (32 points)	

Exercise 1 (5 points) – Interconnection Networks

- a) Design a Clos network of size 120 x 120, using in the first stage modules having 18 inputs. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compare the cost of the two Clos networks designed in the previous point with:
 - i. The crossbar 120 x 120
 - ii. The butterfly of size N=128 (128 inputs and outputs).

Exercise 2 (5 points) – Interconnection Networks

Briefly explain how the routing algorithm works for a **Benes network.**

Consider a Benes network of size N=8 and show how to realize permutation $P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 5 & 4 & 1 & 6 & 0 & 3 \end{pmatrix}$

Question 1 (5 points) – Interconnection networks

Illustrate the design of an XGFT(3; 4, 2, 2; 1, 4, 1), specifying how many nodes there are on each level, how many parents and children they have, and then showing the drawing of the network.

Exercise 3 (6 points) – Quantum circuits

Consider the two-qubit transformations U1 and U2 shown below

- where $\mathbf{Y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ and $\mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Show what transformations U1 and U2 represent, writing the associated 4x4 matrices.
- Show how U1 and U2 act on the states $|00\rangle = |0\rangle \otimes |0\rangle$ and $|10\rangle = |1\rangle \otimes |0\rangle$.

Question 2 (5 points) – Quantum circuits
Explain how the Bloch sphere is used to represent qubits.

Exercise 4 (6 points) - Sparse matrices

Consider the sparse matrix 12x12 and its pattern shown here below

	1	2	3	4	5	6	7	8	9	10	11	12
1	834		234	928	0	0	0	0	0	0	0	0
2	0	625	234	0	0	0	0	0	0	0	0	0
3	0	137	761	0	0	0	0	0	0	0	0	0
4	0	0	0	819	765	0	0	0	0	0	0	0
5	0	0	0	345	826	0	321	0	0	0	0	0
6	0	0	0	0	275	741	0	0	0	0	0	0
7	0	0	0	0	0	234	425	0	876	0	0	0
8	0	0	0	0	0	0	273	758	854	0	0	0
9	0	0	0	0	0	197	0	234	928	0	541	0
10	0	0	0	0	0	0	0	549	0	546	765	0
11	0	0	0	0	0	0	0	0	0	0	379	547
12	0	0	0	0	0	0	0	0	0	0	674	425

- a) Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.
- b) Explain how arrays change after the insertion of the elements $m_{6,1}$ =765 and $m_{9,4}$ = 304 and what is the new memory occupation.
- c) Explain how arrays change after the cancellation of elements $m_{1,4}$ and $m_{9,11}$ and what is the new memory occupation.

BSR with 3x3 blocks	

Ellpack-Itpack