Intensive Computation

Prof. A. Massini

13 June 2022

Part 2
- Student's Name -
- Matricola number -

Exercise 1 (5 points)	
Exercise 2 (5 points)	
Question 1 (5 points)	
Exercise 3 (6 points)	
Question 2 (5 points)	
Exercise 4 (6 points)	
Total (32 points)	

Exercise 1 (5 points) – Interconnection Networks

- a) Design a Clos network of size 256 x 256, using in the first stage modules having 20 inputs. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compare the cost of the two Clos networks designed in the previous point with:
 - i. The crossbar 256 x 256
 - ii. The butterfly of size N=256 (256 inputs and outputs).

Exercise 2 (5 points) – Interconnection Networks

Briefly explain how the routing algorithm works for a **Butterfly network** and a **Cube network**. Consider both networks of size N=8 and show the path between input 0 and output 4 and between input 2 and output 0.

Question 1 (5 points) - Inte	erconnection networks			
Give the definition (and a p		both versions, the GFT	and the XGFT, highlighti	ng the differences.

Exercise 3 (6 points) – Quantum circuits

Consider the two-qubit transformations U1 and U2 shown below

- Show if U1 and U2 represent the same transformation writing the associated 4x4 matrices.
- Show how U1 and U2 act on the states $|00\rangle = |0\rangle \otimes |0\rangle$ and $|10\rangle = |1\rangle \otimes |0\rangle$.

Question 2 (5 points) – Quantum circuits						
Explain how to obtain a controlled gate in both cases when the control bit is the upper and the lower bit, using the method of the projection matrix.						

Exercise 4 (6 points) – Sparse matrices

Consider the sparse matrix 12x12 and its pattern shown here below

	1	2	3	4	5	6	7	8	9	10	11	12
1	834 0	928	234 0	0	0	0	0	0	0	0	0	0
2	0	625	234	0	0	0	0	0	0	0	0	0
3	0	137	761	0	0	0	0	0	0	0	0	0
4	0	0	0	819	765	0	0	0	0	0	0	0
5	0	0	0	345	826	0	321	0	0	0	0	0
6	0	0	0	0	275	741	0	0	0	0	0	0
7	0	0	0	0	0	234	425	0	876	0	0	0
8	0	0	0	0	0	0	273	758	854	0	0	0
9	0	0	0	0	0	197	0	234	0	541	0	0
10	0	0	0	0	0	0	0	549	0	546	765	0
11	0	0	0	0	0	0	0	0	0	0	379	547
12	0	0	0	0	0	0	0	0	0	0	674	425

- a) Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.
- b) Explain how arrays change after the insertion of the elements $m_{3,5}$ =943 $m_{5,2}$ =765, $m_{9,12}$ = 304 and what is the new memory occupation.
- c) Explain how arrays change after the cancellation of elements $m_{5,7}$ and $m_{10,8}$ and what is the new memory occupation.

MSR		

Skyline	