Intensive Computation Prof. A. Massini 31 May 2022

End-of-term test

-	Student's Name -
-	<i>Matricola</i> number -

Exercise 1 (4 points)	
Exercise 2 (4 points)	
Exercise 3 (4 points)	
Question 1 (5 points)	
Exercise 4 (4 points)	
Exercise 5 (4 points)	
Exercise 6 (6 points)	
Question 2 (4 points)	
Total (35 points)	

Exercise 1 (4 points) – Interconnection Networks

- a) Design a Clos network of size 250 x 250, using in the first stage modules having 18 inputs. Consider both cases, **strictly non-blocking** and **rearrangeable** network.
- b) Compare the cost of the crossbar 250 x 250 and the Clos network, strictly non-blocking and rearrangeable, designed in the previous point.

Exercise 2 (4 points) – Interconnection Networks

Illustrate the design of an XGFT(3; 4, 2, 2; 1, 4, 1), specifying how many nodes there are on each level, how many parents and children they have, and then showing the drawing of the network.

Exercise 3 (4 points) – Interconnection Networks

The bit-reversal permutation is a permutation of a sequence of N=2ⁿ elements, where each element is mapped to the element whose binary representation has the same bits in the reversed order.

Consider the case of N=8. Can the bit-reversal permutation be routed on a Butterfly? And on a Shuffle-Exchange? Give an explanation of the result.

Question 1 (5 points) – Interconnection networks						
Explain the recursive construction of the Benes Network and the Looping algorithm.						

Exercise 4 (4 points) – Quantum circuits

Show that the SWAP gate can be obtained using three CNOT gates arranged as shown below.

Exercise 5 (4 points) – Quantum circuits

Show how the matrix of a controlled gate T is obtained in both cases when the control bit is the upper and the lower bit, using the method of the projection matrix.

$$\mathbf{q} \longrightarrow \mathbf{T} \qquad \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$$

Exercise 6 (6 points) - Sparse matrices

Consider the sparse matrix 15x15 and its pattern shown here below

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1,571	0	-94,252	0,785	-283	0	0	0	0	0	0	0	0	0	0
2	0	256	0	-6,28	314,17	-942,52	0	0	0	0	0	0	0	0	0
3	0	0	0,609	94,252	0,785	0	0	0	0	0	0	0	0	0	0
4	-94,252	0	0	508,4	0	-754,02	0	0	0	0	0	0	0	0	0
5	0,785	3,142	0	0	0	0	0	-42,52	0,785	0	0	0	0	0	0
6	-83	0	256	0	0	0	0	-28	0	0	0	0	0	0	0
7	0	0	0	-0,304	0	0	0,609	-0,304	94,258	0	0	0	0	0	0
8	0	0	0	-754,02	-94,25	0	0	154,5	-75,022	0	0	0	0	0	0
9	0	0	0	0	0,609	94,252	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	-0,304	0,609	0	0	0	0
14	0	150,45	94,252	0	0	0	0	0	0	0	942,52	0,785	0	314,17	0,785
15	-40,2	-94,252	0	0	0	0	0	0	0	0	0	942,52	0,785	157,08	0

- a) Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.
- b) Explain how arrays change after the insertion of the elements $m_{10,6}$ =94,3 $m_{11,5}$ =0,765, $m_{12,4}$ =-0,304 and what is the new memory occupation.
- c) Explain how arrays change after the cancellation of elements $m_{4,4}$ and $m_{4,6}$ and what is the new memory occupation.

Ellpack-Itpack nz = 44

BSR (block size 3x	3)				
/ I	nts) – Sparse matrice	es			
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	es the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	
Explain how to ext a) CSR	nts) – Sparse matrice tract a column when	the sparse matrix	is stored using the fo	ollowing formats:	