Intensive computation Prof. A. Massini 15 July 2019 Part A

- Student's Name	- Student's Name					
- <i>Matricola</i> number	· -					

Exercise 1 (6 points)	
Exercise 2 (4 points)	
Exercise 3 (4 points)	
Exercise 4 (5 points)	
Exercise 5 (5 points)	
Question 1 (4 points)	
Question 2 (4 points)	
Total (32 points)	

Exercise 1 (6 points)

a) Consider the sparse matrix here below, whose pattern is shown on the right.

	1	2	3	4	5	6	7	8	9	10	11	12
1	169	191	0	0	0	0	0	0	0	128	125	0
2	191	255	132	0	0	0	0	0	0	219	249	255
3	99	132	90	0	0	0	0	0	0	95	113	139
4	0	0	0	184	129	82	0	0	0	0	0	0
5	0	0	0	129	110	61	0	0	0	0	0	0
6	0	0	0	0	61	46	0	0	0	0	0	0
7	0	0	0	0	0	0	45	0	27	0	0	0
8	0	0	0	0	0	0	71	120	39	0	0	0
9	0	0	0	0	0	0	27	39	19	0	0	0
10	128	219	95	0	0	0	0	0	0	0	163	0
11	125	249	0	0	0	0	0	0	0	163	229	225
12	177	255	139	0	0	0	0	0	0	184	225	255

Specify which arrays you need for the following compressed representations and how many bytes they occupy in memory.

CSR		
Ellpack-Itpack		

CSR			

b) Explain how arrays change after the insertion of element $m_{10,10}$ =30 and what is the new memory occupation.

Ellpack-Itpack
c) Explain what operation must be executed for deleting element m5,6
CSR
Ellpack-Itpack

Exercise 2 (4 points) Errors

a) Given y'=19,7 as the approximation of e^3 , compute the absolute and relative forward error and absolute and relative backward error.
absolute forward error
<i>relative</i> forward error
absolute backward error
<i>relative</i> backward error
b) Compute the value of the condition number.
Exercise 3 (4 points) - Errors Show the contribution of <i>computational error</i> and <i>propagated data error</i> when computing $\sin(7\pi/8)$.

Exercise 4 (5 points) Methods for Differential equations

Consider the initial value problem y'=x+2y y(0)=0

Use Euler's Method for four iterations (e.g compute the approximation y_4) with a step size of $h = 0.10$ to find								
approximate values of the solution at $x = 0.40$. The exact solution is: $y = \frac{1}{4}e^{2x} - \frac{1}{2}x - \frac{1}{4}$								
Repeat with a step size of $h = 0.20$ for two iterations.								
Jse two fractional digits (decimal places).								
Compare approximate solutions obtained for $x = 0.40$ using $h = 0.20$ and $h = 0.10$ with the exact value of the solution giving the percentage error in both cases.								
	_							
	_							
	_							
	_							
	-							
	_							
	_							
	-							
	_							
	_							
	_							
	-							
	_							
	_							
	-							
	_							
	_							
	-							
	-							
	_							
	_							
	-							
	_							
	_							
	-							
	-							
	_							
	_							

Exercise 5 (5 points) - Eigenvalues and eigenvectors

Apply three iterations of the Power Method to the matrix: $\begin{pmatrix} 0 & 11 & -3 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{pmatrix}$							
Start with $x0 = [111]'$.							
	,						

Question 1 (4 points) Methods for Differential equations Explain the Verlet method and the Velocity Verlet method for solving second order differential equations. Question 2 (4 points) Explain the Jacobi method for solving linear systems.