Intensive computation Prof. A. Massini 24 July 2018 Part A | - Student's Name - | |-----------------------------| | - <i>Matricola</i> number - | | Exercise 1 (6 points) | | |-----------------------|--| | Exercise 2 (5 points) | | | Exercise 3 (5 points) | | | Question 1 (6 points) | | | Question 2 (4 points) | | | Question 3 (5 points) | | | Total (31 points) | | ## Exercise 1 (6 points) - Sparse matrices Consider the sparse matrix 10x10 here below | | c1 | c2 | c3 | c4 | c5 | с6 | c7 | c8 | с9 | c10 | |-----|-----------|----|----|----|----|----|----|----|----|-----| | r1 | 9 | 11 | 0 | 0 | 6 | 19 | 0 | 0 | 0 | 0 | | r2 | 2 | 14 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | | r3 | 0 | 0 | 0 | 0 | 14 | 10 | 10 | 4 | 0 | 0 | | r4 | 0 | 0 | 0 | 0 | 17 | 9 | 4 | 6 | 0 | 0 | | r5 | 0 | 0 | 4 | 5 | 0 | 0 | 8 | 15 | 0 | 0 | | r6 | 0 | 0 | 6 | 14 | 0 | 0 | 14 | 20 | 0 | 0 | | r7 | 0 | 0 | 9 | 6 | 0 | 0 | 4 | 14 | 0 | 0 | | r8 | 0 | 0 | 11 | 14 | 0 | 0 | 15 | 11 | 0 | 0 | | r9 | 2 | 3 | 0 | 0 | 13 | 10 | 0 | 0 | 2 | 3 | | r10 | 7 | 13 | 0 | 0 | 8 | 1 | 0 | 0 | 7 | 13 | | a) | Explain which arrays are used for the skyline format. | |----|---| | | Show the skyline representation of the matrix above (you can use symbolic names m _{ij} for nonzero elements). | h۱ | Explain which arrays are used for the Block Sparse Row format. | | D) | Show the Block Sparse Row representation of the matrix above (you can use symbolic names m _{ij} for nonzero | | | Show the block Sparse now representation of the matrix above (you can use symbolic names m _{ii} for nonzero | | | | | | elements). | Compare the memory occupation of the compressed representation before and after the ins | | |---|--| | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | | | ompare the memory occupation of the compressed representation before and after the ins | ## Exercise 2 (5 points) – Errors | Describe what are the <i>computational error</i> and <i>propagated data error</i> . Show the contribution of <i>computational</i> error and propagated data error when computing $\cos(5\pi/8)$, considering two different approximations for function | | | | |---|--|--|--| | cos(x), namely Taylor series stopping after two term and after three terms. | ## Exercise 3 (5 points) – Errors | | y' =9,95 as the approximation of π^2 , compute the absolute and relative forward error and absolute and e backward error. | | | |--------------------|---|--|--| | absolute fo | absolute forward error | | | | <i>relative</i> fo | rward error | | | | absolute b | ackward error | | | | <i>relative</i> ba | ckward error | | | | b) Compı | Ite the value of the condition number. | | | | | | | | | | | | | | Question 1 (5 points) - Linear systems | | | | |---|--|--|--| | Briefly describe the Jacobi method and the Gauss Seidel method. | Question 2 (4 points) | | | | | Describe the Cholesky factorization method. | | | | | Describe the enciest, rustonization method. | ### Question 3 (6 points) Eigenvalues and eigenvectors | a) | Explain how the Power method works. | |----|--| | | Explain what the Deflation method is. | | | Discuss what problems you can encounter when applying the Power method and the Deflation method. | | • | 1, , , | | | | | _ | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | _ | | | _ | | | | | | _ | | | | | | _ | | | _ | | | | | | | | | | | | | |