Intensive computation Prof. A. Massini 14 June 2018

Pa	rt	Δ
Гα	II L	м

- Student's Name -
- <i>Matricola</i> number -

Exercise 1 (6 points)	
Exercise 2 (5 points)	
Question 1 (5 points)	
Exercise 3 (5 points)	
Exercise 4 (5 points)	
Question 2 (5 points)	
Total (31 points)	
	-

Exercise 1 (6 points) - Sparse matrices

Consider the sparse matrix 10x10 here below

	c1	c2	c3	c4	c5	с6	c7	c8	с9	c10
r1	9	11	0	0	6	19	0	0	0	0
r2	2	14	0	0	5	1	0	0	0	0
r3	0	0	0	0	14	10	10	4	0	0
r4	0	0	0	0	17	9	4	6	0	0
r5	0	0	4	5	0	0	0	0	14	15
r6	0	0	6	14	0	0	0	0	14	20
r7	0	0	9	6	0	0	4	14	0	0
r8	0	0	11	14	0	0	15	11	0	0
r9	2	3	0	0	13	10	0	0	2	3
r10	7	13	0	0	8	1	0	0	7	13

a)	Explain which arrays are used for the Ellpack-Itpack format. Show the Ellpack-Itpack representation of the matrix above (you can use symbolic names m _{ij} for nonzero elements).
_	
_	
_	
b)	Explain which arrays are used for the Block Sparse Row format. Show the Block Sparse Row representation of the matrix above (you can use symbolic names m_{ij} for nonzero elements).
_	
_	

	Show Block Sparse Row representation after the insertion of elements $m_{7,2}$ and $m_{8,1}$.
_	
_	
_	
_	
_	
_	
_	
_	
	Compare the memory occupation of the compressed representation before and after the insertion.

Exercise 2 (5 points) – Errors

Describe what are the <i>computational error</i> and <i>propagated data error</i> . Show the contribution of <i>computational error</i> and <i>propagated data error</i> when computing $\cos(5\pi/8)$, considering two different approximations for function			
cos(x), namely Taylor series stopping after two term and after three terms.			

Question 1 (5 points) - Linear systems Briefly describe the Gauss elimination method and the possible strategies of pivoting.		

Exercise 3 (5 points) - Linear systems

Solve the system

$$\begin{cases} 4x_1 - x_2 + x_3 = 3 \\ -2x_1 + 6x_2 + x_3 = 9 \\ -x_1 + x_2 + 7x_3 = -6 \end{cases}$$

using the **Jacobi** method **OR** the **Gauss Seidel** method (at your choice), using $x^{(0)} = (0, 0, 0)$ as starting solution.

Briefly explain how the chosen method works.

Complete the table below, doing at least two iterations.

k	X1 ^(k)	X2 ^(k)	X3 ^(k)
0	0	0	0
1			
2			
3			

Exercise 4 (5 points) – errors

· ·	=9,7 as the approximation of π^2 , compute the absolute and relative forward error and absolute and backward error.	
absolute forward error		
<i>relative</i> forw	vard error	
absolute bad	ckward error	
<i>relative</i> back	kward error	
b) Compute	e the value of the condition number.	

Question 2 (5 points) Eigenvalues and eigenvectors

a) Explain what the Deflation method is.		
b) Discuss what problems you can encounter when applying the Deflation method.		