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Support Vector Machine (SVM)

A classifier derived from statistical learning theory by Vapnik, et
al. in 1992

SVM became famous when, using images as input, it gave
accuracy comparable to neural networks in a handwriting
recognition task

Currently, SVM is widely used in object detection & recognition,
content-based image retrieval, text recognition, biometrics,
speech recognition, etc.

Still one of the best non-deep methods — in many tasks,
comparable performance



‘Classiﬁcation Functions learned by SVM

= It can be an arbitrary function of y=f(x), such as:
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Functions (e.g. feed forward
(e.g perceTprton) neural nets)
y(X)=w' xX+b




Linear Function (Linear separator)

f(x) is a linear function in R":
A X2

f(x)=w'x+b wix+b>0
Written in matrix/vector
notation (T = traspose)
f(x) is a hyper-plane in the n-
dimensional feature space, w
and x are vectors (the
coefficients w; and variables
X; of the hyper-plane)

(Unit-length) normal vector -
of the hyper-plane:

W
n=—

wl

If you divide a vector by its norm, you obtain a unit vector (=with norm =1)



‘ Vector representation (just to recall..)

f(x)=w'x+b

WTX=(w1,w2,...wn)




Linear separator ® denotes +1
O denotes -1

wix+b>0

A 4

sign(x) vy

The function learnt is:
y=sign(w” x + b)

If sign()>0 then x classified
positive

If sign()<0 then x classified
negative e




Iinear Function

How would you classify
these points using a linear
function?

Infinite number of answers!

d

@ denotes +1

O denotes -1




Linear Discriminant Function

How would you classify
these points using a linear
discriminant function in order
to minimize the error rate?

Infinite number of answers!

@ denotes +1

O denotes -1




Linear Discriminant Function
@ denotes +1

_ O denotes -1
How would you classify + Xy
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discriminant function in order ® o
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Linear Discriminant Function
@ denotes +1

O denotes -1

How would you classify
these points using a linear
discriminant function in order
to minimize the error rate?

Infinite number of answers!

Which one is the best?




tLinear Classifiers
X Asign()l vy

sign(w x + b)

@ denotes +1
O denotes -1

How would you
classify this data?

/ \
Misclassified

to +1 class



‘ Large Margin Linear Classifier

@ denotes +1

O denotes -1
= The linear discriminant + Xy Margin
function (classifier) with the safe zone
maximum margin is the ®

best!

= Margin is defined as the
width that the boundary
could be increased by before
hitting a data point in the
learning set

= Why itis the best?

o Robust to outliers and thus
stronger generalization
ability | >




‘ So our target is to learn a linear |®%"=*!

O denotes -1

separator that maximizes margins

= Target of the ML 17
task:

= Learnw, b
(Wherew is a
vector of
coefficients and b
IS a constant)
such that margins
are maximized




Maximizing the margin

We want a classifier with as big margin as possible.

Recall the distance from a point x (x4,X,) to a
line wix+w2y+b =0 is:

H1 @

|W1x1 + wyox, + bl . |W’x+b|

Jw2 + w? [lwl|

The distance between H and H1 is then:
lwex+b|/[|w||=1/[|wl|

The distance (margin) between

Tx+b=-
H1 and H2 is then: 2/[|w|| Wix+b=-1

@)

In order to maximize the margin, we need to minimize ||w||. With the

condition that there must be no data points between H1 and H2, e.g., for any x; in D:
Xi*w+b = +1 when y; =+1

Xi*w+b < -1 wheny, =-1 } Can be combinedinto y;(x;°w)= 1




‘ Large Margin Linear Classifier

= Equivalent formulation: Y
. | 2
minimize EHWH

such that

y,(W X, +b) =1

@ denotes +1

O denotes -1

Margin




Solving the Optimization Problem

Quadratic
programming
with linear
constraints

Lagrangian
Method:

S.t.

L 1 2
minimizec — ‘ ‘ W ‘ ‘
2

y.(W'x. +b) =1

|

minimize L (W,b,q;) = %HWHz — i a, (yl.(wal. +b) - 1)
i=1

st a =0

1




Lagrangian

Given a function f(x) and a set of constraints ci1..cn, a Lagrangian
Is a function L(f,c1,..cn, a1,.. a,) that “incorporates” constraints
In the optimization problem

L(x.a) = f(x) - Sete, (x)

The optimum is at a point where (Karush-Kuhn-Tucker

(KKT) conditions):
DV (x) - E aVe,(x)=0

Derivative is 2)a, =0
3ac;(x)=0 Vi

The third condition is known as complementarity condition



Solving the Optimization Problem

minimize L (W,b,a,) = %HWW — i a, (yl.(wal. +b) - 1)
i=1

Note: our variables here are | g t. a =0 T
w, b andthe q. ‘ l ¢;(x)=(y,(wx;+b)-1)

P _ —wW-Yayx.=0 - w= dayx.
aw_o = Ely Ely
aLP -0 > Eaiyi=0
0b =l

2)a; =0

3)a.( yl.(wal. +b)-1))=0 Vi
To minimize L we need to maximize the red box




‘ Dual Problem Formulation (2)

minimize L,(W,b,a,) = %HWHz - 20@. (yl.( 'x. +b) —1)

. . T
maximize Y ¢, —Ezzaiajyiiji X,
i= =1 J=1

n

st. «a =0, and 20@)@ = ()




‘ All the steps

minimize L (W,b,c,) L W||2 —iai(yl.( ', +b)—1)
i=1

T

w'w

W = 20[)/1 ;
Zay,

1
gzzaiajyiy,-x — L2 aYajYiX; Xi—bYafy,+Xa;

> a; ——ZZa- QYiX] X

Each non-zero g; indicates that corresponding x; is a supportvector SV.




'Why only SV have o>0?

; = 0
yi(w 'z +b)—1 > 0
a(y(w T +b)—1) = 0.

The complementarity condition (the third one of KKT, see previous
definition of Lagrangians) implies that one of the 2 multiplicands is zero.
However, y,(w'x +b)>1 for non-SV xi.

Therefore only data points on the margin (=SV) will have a non-zero
a (because they are the only ones for wichyi (wixi +b )=1)




Final Formulation

To summarize:

Find a,...a, such that

Q(a) =Za; - Y2ZZa,a,yyX;'X; is maximized and
(1) 2ay;=0

(2) a;2 0 for all a;

Again, remember that the constraint (2) can be verified with
a non-equality to zero only for the SV!!

Q(a) can be computed since we know the y,yx;"x; (they are
the pairs <x;y;> of the training set D!)

So, in this final formulation the only variables to be computed
are the a; of the support vectors. Wrt the original formulation,
b and w; have disappeared!




The Optimization Problem Solution

Given a solution to the dual problem Q(a) (i.e. computing the a,...a,), solution
to the primal (i.e. computing w and b) is:

w =ZC{,- X b= Yk - ZC{,- X for any C{k> 0

S a support vector.
ote that we don’ t need to

Each non-zero q; indicates that corresponding Xx;

Then the classifying function for a new point x is
compute w explicitly):

d(x) =ZayxTx+ b (W)
Notice to predict the class of x we perform an inner (dot) product x;"x between

the test point x and the support vectors x; . Only SV are useful for
classification of new instances!! (since the other a values are zero) .

Also keep in mind that solving the optimization problem involved computing the
inner (dot) products x;"x; between all training points.




Inner or dot product between two
vectors (example)

a: (aj,azasz) b: (by,by,bs)

Dot product: 2a;b;

a-b=ab +ab; + a;b.

Example:
Let a=(1,2,3) and b=(4,-5,6)

a-b=1(4)+2(-5)+3(6)=4-10+18=12.




‘ Example

= Suppose we have the dataset:

((1):C0): (D) ) ()(3)-())

positive negative

1 (] 1 2 3 4 5 R -1




‘ By simple inspection, we can identity 3
SVs




First step 1s to write system of

equations to find the “alfas™

We know that wx+b=2ayx.Tx+ b= -1 for
negative SVs (s,) and wix+b=Xa,yx;Tx + b=
1 for positive SVs (s,,s3)

Furthermore, w = Erai y.X; (first contraint from
derivative) and a. are non-zero only for SVs.

we can write a system of equations for each

of the 3 e k(sq, 1) + ayk(s,,s1) + ask(ss,s,) = —1
a1k(sy,52) + azk(sz,52) + azk(ss,s;) =1
a1k (sq,83) + ak(sy,53) + azk(ss,s3) =1

Where k(x,y) is the dot product x'y



| Then we compute the dot products

1
3

k(sy,s1) =(10) ((1))
k(sy,s2) =(10) (i))

k(sp,s3) = (31) (_31) —9-1=8

Etc. (do it yourself)




‘ Finally, we obtain the system of
equations

a; +3a, +3a;3 = —1
3a; +10a, + 8a; =1
3a; +8a, +10a; =1

From the optimization conditions, we also know that: T—-’faiyi — 0

—a;+a;+az =0




 The solution (graphically)

The w; are computed usingw =2a,yX;

W, = 1,W2 —_ O,b = —2




 The solution (graphically)

The w; are computed usingw =2a,yX;

W, = 1,W2 —_ O,b = —2




Dataset with noise

° | denotes +1 Hard Margin: So far we require

all data points be classified correctl
° | denotes -1 pot H y

- No training error
What if the training set is
noisy?

Solution 1: use more complex
separator

OVERFITTING!




Sott Margin Classification

A better solution: slack variables

Slack variables ¢ can be added to allow misclassification

of outliers or noisy examples ‘resulting margins are
called soft. ,

E=max—(0,y—y-(w-x—+b))

X; are the misclassified examples



Large Margin Linear Classifier

New Formulation:
minimize 1 HWH2 + Ci &
2 =

such that

¥, (WTXI. +b) = Ia

5 =0

Slack variables allow an example in the margin 0<¢, <1 . tobe
misclassified, whileif & > 1 itis an error

Parameter C can be viewed as a way to control over-fitting.
For large C a large penalty is assigned to errors.



Hard Margin v.s. Soft Margin

The old formulation:

Find w and 4 such that

®(w) =% wiw is minimized and for all {(X;,;)}
y; (wix;+b)>1

The new formulation incorporating slack variables:

Find w and 4 such that

®(w) =% wiw + CX&,  is minimized and for all {(X;,);)}
y; (WIx;+bh)=>1-& and &=0 forall i

Parameter C can be viewed as a way to control
overfitting.



‘ Eftfect of soft-margin constant C

1.0 C=100

-1.

-1.0 -0.5 0.0 0.5 1.0



Non-linear SVMs

Datasets that are linearly separable (possibly with noise) work
out great:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



The original points (left side of the
schematic) are mapped, i.e., rearranged,

using a set of mathematical functions,
known as kernels.

Input space ['eature space
I I (X) P




SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni




Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

T T
gX)=wp(x)+b= ¥ a(x,)" p(x)+b
iESV
Original formulation was f(x) =wTx+b= Zayx;"x|+ b

No need to know this mapping function explicitly, because we

only use the of feature vectors in both the training
and test.
A Is defined as a function that corresponds to

a dot product of two feature vectors in some expanded
feature space: = T
ure sp K(Xiaxj)—¢(xi) ¢(Xj)

« Note that, obviously, the dot productx;"™x=x;*x IS a kernel function! |



Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors x=[x; x,];

let K(x;,x;)=(1 + x;Tx;)?,

Need to show that K(x;,x;) = @(x;) To(x;), e.g., that it is a kernel function:

K(xi,xy)=(1 + x;Tx;)?,
=14+ X;7°X77 + 2 X;5X1 XX+ X27X57 + 2X1x1 + 2X5% 5
=1 x;,2 V2 x;;x;5 x;52 V2x;; \2x,,]T[1 X’ \2 Xj1Xiz Xy’ \/ijl \/ijz]
=o(x;) 'o(x;), where o(x)=[1 x,° V2 x5 x5,2 N2x; \2x,]

Ex: x:(1,2)>o(x)=(1,12,V2(1 X 2), 22,72 X 1,V2 X 2)=(1,1,2,4,2,2)

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Nonlinear SVMs: The Kernel Trick

Examples of commonly-used kernel functions:
. _ T
o Linear kernel: K(Xl.,Xj) =X; X,
: : _ r p
o Polynomial kernel:  K(X,, Xj) =(1+x; Xj)

o Gaussian (Radial-Basis Function (RBF) ) kernel:

)

2
[ x|

20°

K(Xinxj) = eXp(_

o Sigmoid:
K(Xi9xj) = tanh(/J’OXl.TXj +/3)1)

In general, functions that satisfy Mercer’s condition can be
kernel functions.



Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem) find a1, a2,.. a,
such that:

maximize ial. —%i iaiajyiyj]((xi,xj)
1 =1 =1

I=

such that 0O<q <C

The solution of the discriminant function is

g(x) = ; aiK(XwX)"'b

The optimization technique is the same.



Support Vector Machine: Algorithm

1. Choose a kernel function
2. Choose a value for C

3. Solve the quadratic programming problem
(many software packages available)

4. Construct the discriminant function from the
support vectors



Some Issues

Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate
similarity measures

Choice of kernel parameters
- e.g. 0 in Gaussian kernel
- 0 is the distance between closest points with different classifications

- In the absence of reliable criteria, applicationsrely on the use of a
validation set or cross-validation to set such parameters.

Optimization criterion — Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters are
tested

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial. ppt



Issues

Large margin classifiers are known to be
sensitive to the way features are scaled.
Therefore it is essential to normalize the

data.
Also sensible to unbalanced data

Hyper-parameter tuning (C, kernel): read

A User’s Guide to Support Vector Machines

Asa Ben-Hur Jason Weston

Department of Computer Science NEC Labs America
Colorado State University Princeton, NJ 08540 USA



Summary: Support Vector Machine

1. Large Margin Classifier
0 Better generalization ability & less over-fitting

2. The Kernel Trick

o Map data points to higher dimensional space In
order to make them linearly separable.

o Since only dot product is used, we do not need to
represent the mapping explicitly.



‘ Additional Resource

= http://www.kernel-machines.org/




LibSVM (best
implementation for SVM)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/



