An Introduction of

Support Vector Machine

In part from of Jinwei Gu

Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural networks in a handwriting recognition task
- Currently, SVM is widely used in object detection \& recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Still one of the best non-deep methods - in many tasks, comparable performance

Classification Functions learned by SVM

- It can be an arbitrary function of $y=f(x)$, such as:

Nonlinear
Functions
(e.g. feed forward neural nets)

Linear Function (Linear separator)

- $\mathrm{f}(\mathrm{x})$ is a linear function in R^{n} :

$$
f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b
$$

- Written in matrix/vector notation ($T \rightarrow$ traspose)
- $f(x)$ is a hyper-plane in the n dimensional feature space, w and \mathbf{x} are vectors (the coefficients w_{i} and variables x_{i} of the hyper-plane)
- (Unit-length) normal vector of the hyper-plane:

$$
\mathbf{n}=\frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

If you divide a vector by its norm, you obtain a unit vector (=with norm =1)

Vector representation (just to recall..)

Linear separator

O denotes +1
O denotes -1

Linear Function

- How would you classify these points using a linear function?
- Infinite number of answers!

Linear Discriminant Function

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

Linear Discriminant Function

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

Linear Discriminant Function

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!
- Which one is the best?

Linear Classifiers
 \boldsymbol{x}
 $\operatorname{sign}(x)$

Large Margin Linear Classifier

- The linear discriminant function (classifier) with the maximum margin is the best!
- Margin is defined as the width that the boundary could be increased by before hitting a data point in the learning set
- Why it is the best?
- Robust to outliers and thus stronger generalization ability

So our target is to learn a linear

- denotes +1

O denotes -1 separator that maximizes margins

- Target of the ML task:
- Learn w, b (where w is a vector of coefficients and b is a constant) such that margins are maximized

Maximizing the margin

We want a classifier with as big margin as possible.
Recall the distance from a point $x\left(x_{1}, x_{2}\right)$ to a line $w 1 x+w 2 y+b=0$ is:

$$
\frac{\left|w_{1} x_{1}+w_{2} x_{2}+b\right|}{\sqrt{w_{1}^{2}+w_{2}^{2}}}=\frac{|\boldsymbol{w} \cdot \boldsymbol{x}+b|}{||w||}
$$

The distance between H and H 1 is then:
$|w \cdot x+b| /||w||=1 /||w||$

In order to maximize the margin, we need to minimize \|w\|. With the condition that there must be no data points between H 1 and H 2 , e.g., for any x_{i} in D :
$\mathbf{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b} \geq+1$ when $\mathrm{y}_{\mathrm{i}}=+1$
$\mathbf{x}_{\mathrm{i}} \cdot \mathbf{w}+\mathrm{b} \leq-1$ when $\mathrm{y}_{\mathrm{i}}=-1$
Can be combined into $y_{i}\left(x_{i} \cdot w\right) \geq 1$

Large Margin Linear Classifier

- Equivalent formulation:

$$
\operatorname{minimize} \frac{1}{2}\|\mathbf{w}\|^{2}
$$

such that

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1
$$

Solving the Optimization Problem

Lagrangian

Given a function $f(x)$ and a set of constraints c1..cn, a Lagrangian is a function $L\left(f, c 1, . . c n, \alpha 1, . . \alpha_{n}\right)$ that "incorporates" constraints in the optimization problem

$$
L(x, \alpha)=f(x)-\sum \alpha_{i} c_{i}(x)
$$

The optimum is at a point where (Karush-Kuhn-Tucker (KKT) conditions):

```
Derivative is
```

 zero
 $$
\begin{aligned}
& \text { 1) } \nabla f(x)-\sum \alpha_{i} \nabla c_{i}(x)=0 \\
& \text { 2) } \alpha_{i} \geq 0 \\
& \text { 3) } \alpha_{i} c_{i}(x)=0 \quad \forall i
\end{aligned}
$$

The third condition is known as complementarity condition

Solving the Optimization Problem

$$
\operatorname{minimize} L_{p}\left(\mathbf{w}, b, \alpha_{i}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right)
$$

$$
\begin{array}{|l|lll|}
\hline \begin{array}{l}
\text { Note: our variables here are } \\
\mathbf{w}, \mathrm{b} \text { and the } \alpha_{i}
\end{array} & \text { s.t. } & \alpha_{i} \geq 0 & c_{i}(x)=\left(y_{i}\left(w^{T} x_{i}+b\right)-1\right) \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial L_{p}}{\partial \mathbf{w}}=0 & \square \frac{2}{2} \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \rightarrow \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial L_{p}}{\partial b}=0 & \square
\end{array}
$$

$$
\begin{aligned}
& \text { 2) } \alpha_{i} \geq 0 \\
& \text { 3) } \left.\alpha_{i}\left(y_{i}\left(w^{T} \boldsymbol{x}_{i}+\boldsymbol{b}\right)-1\right)\right)=0 \quad \forall i
\end{aligned}
$$

To minimize L we need to maximize the red box

Dual Problem Formulation (2)

All the steps

Each non-zero α_{i} indicates that corresponding $\mathbf{x}_{\mathbf{i}}$ is a support vector SV.

Why only SV have $\alpha>0$?

$$
\begin{aligned}
\alpha_{i} & \geq 0 \\
y_{i}\left(w^{\top} x_{i}+b\right)-1 & \geq 0 \\
\alpha_{i}\left(y_{i}\left(w^{\top} x_{i}+b\right)-1\right) & =0 .
\end{aligned}
$$

The complementarity condition (the third one of KKT, see previous definition of Lagrangians) implies that one of the 2 multiplicands is zero. However, $y_{i}\left(w^{T} x_{i}+b\right)>1$ for non-SV xi. Therefore only data points on the margin (=SV) will have a non-zero α (because they are the only ones for wich $\left.\mathbf{y i}\left(\mathbf{w}^{\top} \mathbf{x i}+\mathbf{b}\right)=1\right)$

Final Formulation

- To summarize:

Find $\alpha_{1} \ldots \alpha_{n}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}{ }^{\top} \mathbf{x}_{j}$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all α_{i}

- Again, remember that the constraint (2) can be verified with a non-equality to zero only for the SV!!
- $\mathbf{Q}(\boldsymbol{\alpha})$ can be computed since we know the $y_{i} y_{j} \mathbf{x}_{i}{ }^{\top} \mathbf{x}_{j}$ (they are the pairs $\left\langle\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\rangle$ of the training set D!!)
- So, in this final formulation the only variables to be computed are the α_{i} of the support vectors. Wrt the original formulation, b and w_{i} have disappeared!

The Optimization Problem Solution

- Given a solution to the dual problem $\mathbf{Q}(\boldsymbol{\alpha})$ (i.e. computing the $\left.\alpha_{1} \ldots \alpha_{n}\right)$, solution to the primal (i.e. computing \mathbf{w} and b) is:

$$
\mathbf{w}=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i} \quad b=y_{k}-\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}{ }^{\mathrm{T}_{k}} \quad \text { for any } \alpha_{k}>0
$$

- Each non-zero α_{i} indicates that corresponding \mathbf{x}_{i} is a support vector.
- Then the classifying function for a new point x is (hote that we don' t need to compute wexplicitly):

$$
\Phi(\mathbf{x})=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b \quad(x \lambda \text { are SV) }
$$

- Notice to predict the class of x we perform an inner (dot) product $\mathbf{x}_{i}{ }^{\top} \mathbf{x}$ between the test point \mathbf{x} and the support vectors \mathbf{x}_{i}. Only SV are useful for classification of new instances!! (since the other a values are zero).
- Also keep in mind that solving the optimization problem involved computing the inner (dot) products $\mathbf{x}_{i}{ }^{\top} \mathbf{x}_{j}$ between all training points.

Inner or dot product between two vectors (example)

$\mathbf{a}:\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \mathbf{b}:\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)$
Dot product: $\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+{ }^{a} a_{2} b_{2}+a_{3} b_{3}
$$

Example:
Let $a=(1,2,3)$ and $b=(4,-5,6)$
$\mathbf{a} \cdot \mathbf{b}=1(4)+2(-5)+3(6)=4-10+18=12$.

Example

- Suppose we have the dataset:

$$
\left\{\binom{3}{1},\binom{3}{-1},\binom{6}{1},\binom{6}{-1}\right\}\left\{\binom{1}{0},\binom{0}{1},\binom{0}{-1},\binom{-1}{0}\right\}
$$

positive
negative

By simple inspection, we can identify 3 SVs

$$
\left\{s_{1}=\binom{1}{0}, s_{2}=\binom{3}{1}, s_{3}=\binom{3}{-1}\right\}
$$

First step is to write system of equations to find the "alfas"

- We know that $\mathbf{w}^{\top} \mathbf{x}+\mathrm{b}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b=-1$ for negative $\mathrm{SVs}\left(\mathrm{s}_{1}\right)$ and $\mathbf{w}^{\top} \mathbf{x}+\mathrm{b}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}{ }^{\top} \mathbf{x} \mathbf{x}+b=$ 1 for positive $\mathrm{SVs}_{n}\left(\mathrm{~s}_{2}, \mathrm{~s}_{3}\right)$
- Furthermore, $\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ (first contraint from derivative) and $\boldsymbol{a}_{\mathrm{i}}$ atre non-zero only for SVs.
- we can write a system of equations for each of the $3 \alpha_{1} k\left(s_{1}, s_{1}\right)+\alpha_{2} k\left(s_{2}, s_{1}\right)+\alpha_{3} k\left(s_{3}, s_{1}\right)=-1$

$$
\begin{aligned}
& \alpha_{1} k\left(s_{1}, s_{2}\right)+\alpha_{2} k\left(s_{2}, s_{2}\right)+\alpha_{3} k\left(s_{3}, s_{2}\right)=1 \\
& \alpha_{1} k\left(s_{1}, s_{3}\right)+\alpha_{2} k\left(s_{2}, s_{3}\right)+\alpha_{3} k\left(s_{3}, s_{3}\right)=1
\end{aligned}
$$

Where $k(x, y)$ is the dot product $x^{\top} y$

Then we compute the dot products

$$
\begin{gathered}
k\left(s_{1}, s_{1}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 \\
k\left(s_{1}, s_{2}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{3}{1}=3 \\
k\left(s_{2}, s_{3}\right)=\left(\begin{array}{ll}
3 & 1
\end{array}\right)\binom{3}{-1}=9-1=8
\end{gathered}
$$

Etc. (do it yourself)

Finally, we obtain the system of equations

$$
\begin{gathered}
\alpha_{1}+3 \alpha_{2}+3 \alpha_{3}=-1 \\
3 \alpha_{1}+10 \alpha_{2}+8 \alpha_{3}=1 \\
3 \alpha_{1}+8 \alpha_{2}+10 \alpha_{3}=1
\end{gathered}
$$

From the optimization conditions, we also know that:

$$
\sum_{i} \alpha_{i} y_{i}=0
$$

$$
\begin{gathered}
-\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
\alpha_{2}=\alpha_{3}=\frac{1}{8} ; \alpha_{1}=\frac{1}{4} ; b=-2
\end{gathered}
$$

The solution (graphically)

The w_{i} are computed using $\mathbf{w}=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}$

$$
w_{1}=1, w_{2}=0, b=-2
$$

The solution (graphically)

The w_{i} are computed using $\mathbf{w}=\Sigma \alpha_{i} y_{i} \mathbf{x}_{i}$

$$
w_{1}=1, w_{2}=0, b=-2
$$

Dataset with noise

- Hard Margin: So far we require all data points be classified correctly
- No training error
- What if the training set is noisy?
- Solution 1: use more complex separator

OVERFITTING!

Soft Margin Classification

- A better solution: slack variables
- Slack variables ξ_{i} can be added to allow misclassification of outliers or noisy examples, resulting margins are

$$
\xi_{i}=\max \left(0, \gamma-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

x_{i} are the misclassified examples

Large Margin Linear Classifier

- New Formulation:

$$
\operatorname{minimize} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{gathered}
$$

Slack variables allow an example in the margin $0 \leq \zeta_{i} \leq 1$. to be misclassified, while if $\xi_{i}>1$ it is an error

- Parameter C can be viewed as a way to control over-fitting. For large C a large penalty is assigned to errors.

Hard Margin v.s. Soft Margin

- The old formulation:

$$
\begin{aligned}
& \text { Find } \mathbf{w} \text { and } b \text { such that } \\
& \boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w} \text { is minimized and for all }\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\} \\
& y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+\mathrm{b}\right) \geq 1
\end{aligned}
$$

- The new formulation incorporating slack variables:

$$
\begin{aligned}
& \text { Find } \mathbf{w} \text { and } b \text { such that } \\
& \boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}+C \Sigma \xi_{i} \quad \text { is minimized and for all }\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\} \\
& y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0 \text { for all } i
\end{aligned}
$$

- Parameter C can be viewed as a way to control overfitting.

Effect of soft-margin constant C

Non-linear SVMs

- Datasets that are linearly separable (possibly with noise) work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Non-linear SVMs: Feature Space

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

The original points (left side of the schematic) are mapped, ie., rearranged, using a set of mathematical functions, known as kernels.

Input space
$\boldsymbol{\varphi}(\mathbf{x})^{\text {Feature space }}$

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Nonlinear SVMs: The Kernel Trick

- With this mapping, our discriminant function is now:

$$
g(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+b=\sum_{i \in \mathrm{SV}} \alpha \phi\left(\mathbf{x}_{i}\right)^{T} \phi(\mathbf{x})+b
$$

Original formulation was $f(\mathbf{x})=\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+\mathrm{b}=\Sigma \alpha_{i} y \mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}+b$

- No need to know this mapping function explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \equiv \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$
- Note that, obviously, the dot product $\mathbf{x}_{\mathbf{i}}{ }^{\top} \mathbf{x}=\mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}$ IS a kernel function!

Nonlinear SVMs: The Kernel Trick

- An example:

2-dimensional vectors $\mathrm{x}=\left[\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right]$;

$$
\text { let } \boldsymbol{K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\left(\mathbf{1}+\mathbf{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}\right)^{\mathbf{2}}
$$

Need to show that $K\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{i}}\right)^{\mathrm{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{j}}\right)$, e.g., that it is a kernel function:

$$
\begin{aligned}
K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right) & =\left(1+\mathbf{x}_{\mathrm{i}}^{\mathrm{T}} \mathbf{x}_{\mathrm{j}}\right)^{2}, \\
& =1+x_{i 1}{ }^{2} x_{j 1}{ }^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}{ }^{2} x_{j 2}{ }^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2} \\
& =\left[\begin{array}{lll}
1 & x_{i 1}{ }^{2} \sqrt{ }{ }^{2} & x_{i 1} x_{i 2} \\
x_{i 2} & { }^{2} \sqrt{ } 2 x_{i 1} \sqrt{ } 2 x_{i 2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lll}
1 & x_{j 1}{ }^{2} \sqrt{ } 2 x_{j 1} x_{j 2} & x_{j 2}{ }^{2} \sqrt{ } 2 x_{j 1} \sqrt{ } 2 x_{j 2}
\end{array}\right] \\
& =\varphi\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{j}}\right), \quad \text { where } \varphi(\mathrm{x})=\left[\begin{array}{lll}
1 & x_{1}{ }^{2} \sqrt{ } 2 x_{1} x_{2} & x_{2}{ }^{2} \sqrt{ } 2 x_{1} \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

Ex: $\mathrm{x}:(1,2) \rightarrow \varphi(\mathrm{x})=\left(1,1^{2}, \sqrt{ } 2(1 \times 2), 2^{2}, \sqrt{ } 2 \times 1, \sqrt{ } 2 \times 2\right)=(1,1,2,4, \sqrt{ } 2,2)$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
- Linear kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
- Polynomial kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{p}$
- Gaussian (Radial-Basis Function (RBF)) kernel:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\beta_{0} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\beta_{1}\right)
$$

- In general, functions that satisfy Mercer's condition can be kernel functions.

Nonlinear SVM: Optimization

- Formulation: (Lagrangian Dual Problem) find $\alpha 1, \alpha 2, . . \alpha_{n}$ such that:

$$
\operatorname{maximize} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

such that

$$
\begin{aligned}
& 0 \leq \alpha_{i} \leq C \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- The solution of the discriminant function is

$$
g(\mathbf{x})=\sum_{i \in \mathrm{SV}} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

- The optimization technique is the same.

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some Issues

- Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion - Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested

Issues

- Large margin classifiers are known to be sensitive to the way features are scaled. Therefore it is essential to normalize the data.
- Also sensible to unbalanced data
- Hyper-parameter tuning (C, kernel): read

A User's Guide to Support Vector Machines

Asa Ben-Hur
Department of Computer Science
Colorado State University

Jason Weston
NEC Labs America
Princeton, NJ 08540 USA

Summary: Support Vector Machine

- 1. Large Margin Classifier
- Better generalization ability \& less over-fitting
- 2. The Kernel Trick
- Map data points to higher dimensional space in order to make them linearly separable.
- Since only dot product is used, we do not need to represent the mapping explicitly.

Additional Resource

- http://www.kernel-machines.org/

LibSVM (best implementation for SVM)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

