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Support Vector Machine (SVM)

n A classifier derived from statistical learning theory by Vapnik, et 
al. in 1992

n SVM became famous when, using images as input, it gave 
accuracy comparable to neural networks in a handwriting 
recognition task

n Currently, SVM is widely used in object detection & recognition, 
content-based image retrieval, text recognition, biometrics, 
speech recognition, etc.

n Still one of the best non-deep methods – in many tasks, 
comparable performance



Classification Functions learned by SVM

n It can be an arbitrary function of y=f(x), such as:

Linear
Functions 

(e.g perceprton)
y(x) = wTx+b

Nonlinear
Functions 

(e.g. feed forward 
neural nets)



Linear Function (Linear separator)
n f(x) is a linear function in Rn:

n Written in matrix/vector 
notation (T à traspose)

f (x) = wTx+b

x1

x2

wT x + b < 0

wT x + b > 0

n f(x) is a hyper-plane in the n-
dimensional feature space, w
and x are vectors (the 
coefficients wi and variables 
xi of the hyper-plane)

n (Unit-length) normal vector 
of the hyper-plane:

=
wn
w

n

If you divide a vector by its norm, you obtain a unit vector (=with norm =1)



Vector representation (just to recall..)

f (x) = wTx+b

wTx = (w1,w2 ,...wn )
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Linear  separator 

x1

x2

wT x + b < 0

wT x + b > 0

denotes +1
denotes -1

sign(x) x

The function learnt is: 
y=sign(wT x + b)
If sign()>0 then x classified 
positive
If sign()<0 then x classified 
negative

y



n How would you classify 
these points using a linear 
function?

Linear Function
denotes +1
denotes -1

x1

x2

n Infinite number of answers!



n How would you classify 
these points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1
denotes -1

x1

x2

n Infinite number of answers!



n How would you classify 
these points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1
denotes -1

x1

x2

n Infinite number of answers!



x1

x2n How would you classify 
these points using a linear 
discriminant function in order 
to minimize the error rate?

Linear Discriminant Function
denotes +1
denotes -1

n Infinite number of answers!

n Which one is the best?



Linear Classifiers
sign(x) x y

denotes +1
denotes -1

sign(w x + b)

How would you 
classify this data?

Misclassified
to +1 class



Large Margin Linear Classifier 

“safe zone”
n The linear discriminant 

function (classifier) with the 
maximum margin is the 
best!

n Margin is defined as the 
width that the boundary 
could be increased by before 
hitting a data point in the 
learning set

n Why it is the best?
q Robust to outliers and thus 

stronger generalization 
ability 

Margin

x1

x2

denotes +1
denotes -1



So our target is to learn a linear 
separator that maximizes margins
n Target of the ML 

task:
n Learn w, b 

(where w is a 
vector of 
coefficients and b
is a constant) 
such that margins
are maximized x1

x2

denotes +1
denotes -1



Maximizing the margin
We want a classifier with as big margin as possible. 

Recall the distance from a point x (x1,x2) to a 
line w1x+w2y+b = 0 is:

|𝑤#𝑥# +𝑤&𝑥& + 𝑏|
𝑤#& +𝑤&&

=
|𝒘 * 𝒙 + 𝑏|
| 𝑤 |

The distance between H and H1 is then:
|w•x+b|/||w||=1/||w||

The distance (margin) between 
H1 and H2 is then: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the 
condition that there must be no data points between H1 and H2, e.g., for any xi in D:
xi•w+b ≥ +1 when yi =+1 
xi•w+b ≤ -1 when yi =-1        Can be combined into yi(xi•w) ≥ 1 

d+
d-

H1

H2
H x(x1,x2)

wTx+b=+1

wTx+b=0

wTx+b=-1



Large Margin Linear Classifier 

n Equivalent formulation: 

x1

x2

denotes +1
denotes -1
Margin

x+

x+

x-
n( ) 1T

i iy b+ ≥w x

minimize  1
2
w

2

such that



Solving the Optimization Problem 

( ) 1T
i iy b+ ≥w x

21minimize  
2
w

s.t.

Quadratic 
programming 

with linear 
constraints

( )2

1

1minimize  ( , , ) ( ) 1
2

n
T

p i i i i
i

L b y bα α
=

= − + −∑w w w x

s.t.

Lagrangian
Method:

0iα ≥



Lagrangian

L(x,α) = f (x)− αi∑ ci (x)

Given a function f(x) and a set of constraints c1..cn, a Lagrangian
is a function L(f,c1,..cn, α1,..  αn)  that “incorporates” constraints
in the optimization problem

The optimum is at a point where (Karush-Kuhn-Tucker
(KKT) conditions):
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The third condition is known as complementarity condition

Derivative is
zero



Solving the Optimization Problem 

( )2
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1minimize  ( , , ) ( ) 1
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p i i i i
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0pL
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w− αi yixi = 0 →

i=1
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∑ w = αi yixi
i=1
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∑
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0
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i i
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yα
=
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2)αi ≥ 0

3)αi ( yi (w
T xi + b)−1)) = 0 ∀i

)1)(()( −+= bxwyxc i
T

ii

To minimize L we need to maximize the red box

Note: our variables here are
w, b and the αi



Dual Problem Formulation (2)

( )2

1

1minimize  ( , , ) ( ) 1
2

n
T

p i i i i
i

L b y bα α
=

= − + −∑w w w x

s.t. 0iα ≥

1 1 1
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2
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All the steps
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Each non-zero αi indicates that corresponding xi is a support vector  SV.

s.t. αi≥0



Why only SV  have α>0?

The complementarity condition (the third one of KKT, see previous
definition of Lagrangians) implies that one of the 2 multiplicands is zero.
However,                         for non-SV xi.
Therefore only data points on the margin (=SV) will have a non-zero 
α (because they are the only ones for wich yi (wTxi + b ) = 1 )

yi (w
T xi + b)>1



Final Formulation

n To summarize:

n Again, remember that the constraint (2) can be verified with 
a non-equality to zero only for the SV!!

n Q(α) can be computed since we know the yiyjxi
Txj (they are 

the pairs <xi,yi> of the training set D!!) 
n So, in this final formulation the only variables to be computed 

are the αi of the support vectors.  Wrt the original formulation, 
b and wi have disappeared!

Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1)  Σαiyi = 0
(2) αi ≥ 0 for all αi



The Optimization Problem Solution

n Given a solution to the dual problem Q(α) (i.e. computing the  α1…αn ), solution 
to the primal  (i.e. computing w and b) is: 

n Each non-zero αi indicates that corresponding xi is a support vector.
n Then the classifying function for a new point x is (note that we don’t need to 

compute w explicitly):

n Notice to predict the class of x we perform an inner (dot) product xi
Tx between 

the test point x and the support vectors xi . Only SV are useful for 
classification of new instances!! (since the other α values are zero) .

n Also keep in mind that solving the optimization problem involved computing the 
inner (dot) products xi

Txj between all training points.

w =Σαiyixi b = yk - Σαiyixi
Txk for any αk > 0

Φ(x) = Σαiyixi
Tx + b  (xi are SV)



Inner or dot product between two
vectors (example)

a: (a1,a2,a3)  b: (b1,b2,b3)

Dot product: Σaibi

a

Example: 

Let a=(1,2,3) and b=(4,−5,6)

a⋅b=1(4)+2(−5)+3(6)=4−10+18=12.



Example

n Suppose we have the dataset: 

positive negative



By simple inspection, we can identify 3 
SVs

c



First step is to write system of 
equations to find the “alfas”
n We know that wTx+b=Σαiyixi

Tx + b= -1 for 
negative SVs (s1) and wTx+b=Σαiyixi

Tx + b= 
1 for positive SVs (s2,s3)

n Furthermore,                   (first contraint from 
derivative) and αi are non-zero only for SVs.

n we can write a system of equations for each
of the 3 points: 

1

n

i i i
i

yα
=

=∑w x

Where k(x,y) is the dot product xTy



Then we compute the dot products

Etc. (do it yourself)



Finally, we obtain the system of 
equations

From the optimization conditions, we also know that: 



The solution (graphically)

The wi are computed using w =Σαiyixi



The solution (graphically)

The wi are computed using w =Σαiyixi



Dataset with noise  

n Hard Margin: So far we require 
all data points be classified correctly 

- No training error

n What if the training set is 
noisy?

- Solution 1: use more complex 
separator

denotes +1
denotes -1

OVERFITTING!



Soft Margin Classification  

n A better solution: slack variables
n Slack variables ξi can be added to allow misclassification 

of outliers or noisy examples, resulting margins are 
called soft.

ξi

ξi

ξi =max (0,γ − yi (w ⋅ xi + b))
xi are the misclassified examples



Large Margin Linear Classifier 

n New Formulation:

( ) 1T
i i iy b ξ+ ≥ −w x

2

1

1minimize  
2

n

i
i

C ξ
=

+ ∑w

such that

0iξ ≥

n Parameter C can be viewed as a way to control over-fitting. 
For large C a large penalty is assigned to errors.

Slack variables allow an example in the margin 0 ≤ 𝜉/ ≤ 1		to	be		
misclassified, while	if 𝜉/ > 1 it is an error



Hard Margin v.s. Soft Margin
n The old formulation:

n The new formulation incorporating slack variables:

n Parameter C can be viewed as a way to control 
overfitting.

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi≥ 0 for all i



Effect of soft-margin constant C



Non-linear SVMs
n Datasets that are linearly separable (possibly with noise) work 

out great:

0 x

0 x

x2

0 x

n But what are we going to do if the dataset is just too hard? 

n How about… mapping data to a higher-dimensional space:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Non-linear SVMs:  Feature Space
n General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 
training set is separable:

Φ:  x→ φ(x)

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



The original points (left side of the 
schematic) are mapped, i.e., rearranged, 
using a set of mathematical functions, 
known as kernels.

φ(x)





Nonlinear SVMs: The Kernel Trick
n With this mapping, our discriminant function is now:

g(x) = wTφ(x)+b = αiφ(xi )
Tφ(x)

i∈SV
∑ +b

Original formulation was f(x) =wTx+b= Σαiyixi
Tx + b 

n No need to know this mapping function explicitly, because we 
only use the dot product of feature vectors in both the training 
and test.

n A kernel function is defined as a function that corresponds to 
a dot product of two feature vectors in some expanded 
feature space: ( , ) ( ) ( )T

i j i jK φ φ≡x x x x
• Note that, obviously,  the dot product xi

Tx=xi�x IS a kernel function!



Nonlinear SVMs: The Kernel Trick

2-dimensional vectors x=[x1   x2];  

let K(xi,xj)=(1 + xi
Txj)2

,

Need to show that K(xi,xj) = φ(xi) Tφ(xj), e.g., that it is a kernel function:

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

Ex: x:(1,2)àφ(x)=(1, 12, √2(1×2), 22,√2×1, √2×2)=(1,1,2,4, √2,2) 

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

n An example:

= φ(xi) Tφ(xj),    where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Nonlinear SVMs: The Kernel Trick

q Linear kernel:

2

2( , ) exp( )
2
i j

i jK
σ

−
= −

x x
x x

( , ) T
i j i jK =x x x x

( , ) (1 )T p
i j i jK = +x x x x

0 1( , ) tanh( )T
i j i jK β β= +x x x x

n Examples of commonly-used kernel functions:

q Polynomial kernel:

q Gaussian (Radial-Basis Function (RBF) ) kernel:

q Sigmoid:

n In general, functions that satisfy Mercer’s condition can be 
kernel functions.



Nonlinear SVM: Optimization
n Formulation: (Lagrangian Dual Problem) find α1, α2,.. αn

such that:

1 1 1

1maximize  ( , )
2

n n n

i i j i j i j
i i j

y y Kα αα
= = =

−∑ ∑∑ x x

such that 0 i Cα≤ ≤

1
0

n

i i
i

yα
=

=∑

n The solution of the discriminant function is

SV
( ) ( , )i i

i
g K bα

∈

= +∑x x x

n The optimization technique is the same.



Support Vector Machine: Algorithm

n 1. Choose a kernel function

n 2. Choose a value for C

n 3. Solve the quadratic programming problem 
(many software packages available)

n 4. Construct the discriminant function from the 
support vectors 



Some Issues
n Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate 
similarity measures

n Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications 
- In the absence of reliable criteria, applications rely on the use of a 

validation set or cross-validation to set such parameters. 

n Optimization criterion – Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are 

tested 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Issues

n Large margin classifiers are known to be 
sensitive to the way features are scaled. 
Therefore it is essential to normalize the 
data. 

n Also sensible to unbalanced data
n Hyper-parameter tuning (C, kernel): read



Summary: Support Vector Machine

n 1. Large Margin Classifier 
q Better generalization ability & less over-fitting

n 2. The Kernel Trick
q Map data points to higher dimensional space in 

order to make them linearly separable.
q Since only dot product is used, we do not need to 

represent the mapping explicitly.



Additional Resource

n http://www.kernel-machines.org/



LibSVM (best 
implementation for SVM)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


