552 DISTRIBUTED DATABASE MANAGEMENT

In case (a), M must remember that /N has asked it for the token, but does
not know whether it can have it yet [another site could answer (b)]. M
“reserves” the token for N; doing so prevents another site P from also
being told by M that it has no objection to P’s obtaining the token.*

3. If all sites reply (a) to IV, then N knows it can have the write-token. It
sends a message to each site that replied (a), telling it that IV has accepted
the write-token, and they should destroy whatever tokens they have for A.
If some site replies (b), then IV cannot have the write-token, and it must
send messages to the nodes that replied (a) telling them they can cease
reserving the write-token for A, and may allow another site to get that
token.

To read A, essentially the same process takes place, except that if the local
site has any of the read-tokens for A, no messages need to be sent. In (2) above,
the responding site M does not object [send message (b)] if it has a read-token
for A, only if it has a write-token. In (3), if NV is allowed to obtain a read-token
for A, then only write-tokens, not read-tokens, are destroyed at other sites.

More Comparisons Among Methods

Bvidently, the primary copy token method uses considerably more messages
than the other methods so far; both reading and writing can use 3m control

messages, where m is number of nodes in the network, while other methods

use a number of messages that is proportional to the number of copies of an
item, at worst. On the other hand, the primary copy token approach averages
much less than 3m control messages per lock operation when one site runs most
of the transactions that reference a particular item. Then the write-token for
that item will tend to reside at that site, making control messages unneeded for
most transactions. Thus, a direct comparison with the k-of-n methods is not
possible; which is preferable depends on the site distribution of the transactions
that lock a particular item.

Similarly, we cannot compare the primary site method directly with the
write-locks-all method; while the former uses smaller numbers of messages on
the average, the latter has the advantage when most locks are read-locks on
copies that are not at the primary site for that item. It appears that the
primary site approach is more efficient than the k-of-n methods for £ > 1.
However, there are other considerations that might enter into the picture. For
example, the primary site method is vulnerable to a failure at the primary site

4 The reason we must be careful is that there might be no tokens for A at all. For example,
none might have been created, or the last one could have been lost, because the node
holding it failed. If we did not use “reservations,” two sites could ask for the write-token
for A at the same time, and each be told by all of the sites (including each other) that
they did not have any token on A. Then, each would create a write-token for A and
there would be two tokens when at most one should exist.

10.2 DISTRIBUTED LOCKING 553

for an item, as the sites must then detect the failure and send messages to
agree on a new primary site. In comparison, k-of-n type strategies can continue
locking that item with no interruption.

We can also compare primary copy token methods with the primary site
approach. In the later method, a write requires two control messages to request
and receive a lock from the primary site, then n data messages, as usual, to
write the new value. Reading requires a control message asking for a lock
and a data message in response, granting the request and sending the value.
If all transactions referencing A run at the primary site for A, then the two
approaches are exactly the same; no messages are sent, except for the obligatory
writes to update other copies of A, if any. When other sites do reference A, the
primary site method appears to save a considerable number of messages.

However, the token method is somewhat more adaptable to temporary
changes in behavior. For example, in a hypothetical bank database, suppose a
customer goes on vacation and starts using a branch different from his usual
one. Under the primary site method, each transaction at the new branch would
require an exchange of locking messages. In comparison, under the token ap-
proach, after the first transaction ran at the new branch, the write-token for the
account would reside at that branch as long as the customer was on vacation.

The Central Node Method

The last approach to locking that we shall consider is that in which one partic-
ular node of the network is given the responsibility for all locking. This method
is almost like the primary site method; the only difference is that the primary
site for an item, being the one central node, may not be a site that has a copy
of the item. Thus, a read-lock must be garnered by the following steps:

1. Request a read-lock from the central node.

2. If not granted, the central node sends a message to the requesting site to
that effect. If granted, the central node sends a message to a site with a
copy of the item.

3. The site with the copy sends a message with the value to the requesting
site.

Hence, the central node method often requires an extra control message to
tell some other site to ship the value desired. Similarly, when writing, the site
running the transaction must often send an extra message to the central node
telling it to release the lock. In the primary site method, this message would
be included with the messages committing the transaction.

Therefore, it seems that the central node approach behaves almost like the
primary site method, but slower. Moreover, while it does not show in our model,
which only counts messages without regard for destination, there is the added
disadvantage that most of the message traffic is headed to or from one node,



554 DISTRIBUTED DATABASE MANAGEMENT

thus creating a potential bottleneck. Additionally, this method is especially
vulnerable to a crash of the central node.

However, the algorithm has its redeeming features, also in areas not covered
by our model. For example, under certain assumptions about loads on the
system, there is an advantage to be had by bundling messages to and from the
central site. The case for the central node approach is made by Garcia-Molina

[1979].

Summary

The relative merits and demerits of the various approaches are summarized in
Figure 10.2. We use n for the number of copies of an item and m for the total
number of nodes. We assume in each case that the lock is granted and we ignore
the possible savings that result if we can read or write at the same site as the
transaction, thus saving a data message. The tabulation of Figure 10.2 counts
only control messages, since each write requires n data messages, and each read
requires one data message, no matter what the locking method.

Method Control Msgs. Control Msgs. Comments
to Write to Read
Write-Locks- 2n 1 Good if read
All dominates
Majority >n+1 >n Avoids some
deadlock
Primary Site 2 1 Efficient; some
vulnerability
to crash
Primary Copy 0-4m 0-4m Adapts to changes
Token in use pattern
Central Node 3 2 Vulnerable to

crash; efliciencies
may result from
centralized traffic
pattern

Figure 10.2 Advantages and disadvantages of distributed locking methods.

10.3 DISTRIBUTED TWO-PHASE LOCKING 555

10.3 DISTRIBUTED TWO-PHASE LOCKING

From the last section, we see that it is feasible to define locks on logical items
in various ways. Now, we must consider how to use locking to ensure the seri-
alizability of transactions that consist of several subtransactions, each running
at a different site. Recall that a schedule of transactions in a distributed envi-
ronment is a sequence of events, each occurring at one site. While several sites
may perform actions simultaneously, we shall break ties arbitrarily, and assume
that, according to some global clock, there is a linear order to events. A sched-
ule is serial if it consists of all the actions for one transaction, followed by all
the actions for another, and so on. A schedule is serializable if it is equivalent,
in its effect on the database, to a serial schedule.

Recalling’ the strong relationship between serializability and two-phase
locking from Section 9.3, let us consider how two-phase locking can be gen-
eralized to the distributed environment. Our first guess might be that at each
node, the subtransactions should follow the two-phase protocol. However, that
is not enough, as the following example shows.

Example 10.3: Suppose that logical transaction 77 has two subtransactions:

1. Ti.1, which runs at site 5, and writes a new value for copy A4; of logical
item A, and
2. Ti.0, which runs at site S5 and writes the same new value for copy Ay of

A.

Also, transaction Ty has two subtransactions, T ; running at S; and writing a
new value of A;, and T3 o, running at S and writing the same value into 4. We
shall assume that write-locks-all is the protocol followed by these transactions
for defining locks on logical items, but as we shall see, other methods cause
similar problems.

Ti1 To4 Tio Ty
WLOCK A; WLOCK A,
UNLOCK A; UNLOCK Aj

WLOCK A; WLOCK A,
UNLOCK A; UNLOCK A,

At 5 At 5>

Figure 10.3 Transactions with two-phase locking at each node.

For the example at hand, we see in Figure 10.3 a possible schedule of actions
at the two sites. Pairs of events on each line could occur simultaneously, or we
could assume they occur in either order; it doesn’t matter. Evidently, the
situation at site 57 tells us that 77 ; must precede T3 ; in the serial order. At



556 DISTRIBUTED DATABASE MANAGEMENT

Sy we find that T5 5 must precede Ty 5. Unfortunately, a serial order must be
formed not just from the subtransactions, but from (logical) transactions. Thus,
if we choose to have T7 precede Ty, then Tj 5 precedes Tj o, violating the local
ordering at S;. Similarly, if the serial order is T%, T1, then the local ordering at
51 is violated. In fact, in the order of events indicated in Figure 10.3, the two
copies of A receive different final values, which should immediately convince us
_ that no equivalent serial order exists.

The problem indicated above is not restricted to write-locks-all. For exam-
ple, suppose we use the primary site method of locking. We can modify Figure
10.3 by letting A; be the sole copy of A and letting Ay be the sole copy of
another logical item B. Therefore, S; and S are the primary sites for A and
B, respectively. The schedule of Figure 10.3 is still not serializable, since the
final value of B is that written by 7} and the final value of A4 is what T, writes.
In fact, notice that all the locking methods of Section 10.2 become the same
when there is only one copy of each item; thus this problem of nonserializability
comes up no matter what method we use. [

Strict Two-Phase Locking

The problem illustrated by Example 10.3 is that in order for distributed trans-
actions to behave as if they are two-phase locked, we must consider not only the
local schedules, but the global schedule of actions, and that schedule must be
two-phase locked. The consequence is that a subtransaction of T' cannot release
any lock if it is possible that another subtransaction of 7' at another site will
later request a lock. For example, T 1 of Figure 10.3 violated this principle by
unlocking A; before T} 5 got its lock on A,.

Thus, each subtransaction of a given transaction must inform the other
subtransactions that it has requested all of its locks. Only after all subtransac-
tions have reached their individual lock points has the transaction as a whole
reached its lock point, after which the subtransactions may release their locks.
The problem of all subtransactions agreeing that they have reached the lock
point is one example of a distributed agreement problem. We shall study an-
other, the distributed agreement to commit, in the next section. It will then
become clear that distributed agreement, especially in the face of possible net-
work failures, is very complex and expensive. Thus, the sending of control
messages to establish that the subtransactions have reached their lock points is
not normally sensible.

Rather, there are many reasons to insist that transactions in a distributed
environment be strict, that is, they unlock only after reaching their commit
point. For example, Section 9.8 discussed the problem of reading dirty data
and consequent cascading rollback, e.g., which strict two-phase locking solves.
If our transactions obey the strict protocol, then we can use the commit point
as the lock point. The subtransactions agree to commit, by a process described

10.4 DISTRIBUTED COMMITMENT 557

in the next section, and only after committing are locks released.

In a situation like Figure 10.3, 71 ; and T3 2 would not release their locks at
the second line, if the strict protocol were followed. In this case, there would be
a deadlock between T3 and T3, since each has a subtransaction that is waiting
for a lock held by a subtransaction of the other. We shall discuss distributed
deadlock detection in Section 10.8. In this case, one of T; and T3 has to abort,
along with all of its subtransactions.

10.4 DISTRIBUTED COMMITMENT

For the reason just discussed (supporting distributed two-phase locking), as
well as for the reasons discussed in Sections 9.8 and 9.10 (resiliency), it is
necessary for a distributed transaction to perform a commit action just before
termination. The existence of subtransactions at various sites complicates the
process considerably.

Suppose we have a transaction 7' which initiated at one site and spawned
subtransactions at several other sites. We shall call the part of T' that executes
at, its home site a subtransaction of the logical transaction T'; thus logical T
consists solely of subtransactions, each executing at a different site. We distin-
guish the subtransaction at the home site by calling it the coordinator, while
the other subtransactions are the participants. This distinction is important
when we describe the distributed commitment process.

In the absence of failures, distributed commitment is conceptually simple.
Each subtransaction T; of logical transaction 7' decides whether to commit
or abort. Recall, T; could abort for any of the reasons discussed in Chapter
9, such as involvement in a deadlock or an illegal database access. When T;
decides what it wants to do, it sends a vote~commit or vote-abort message
to the coordinator. If the vote-abort message is sent, T; knows the logical
transaction 7 must abort, and therefore T; may terminate. However, if 7} sends
the vote-commit message, it does not know whether T will eventually commit,
or whether some other subtransaction will decide to abort, thus causing T to
abort.

Thus, after voting to commit, 7T; must wait for a message from the coordina-
tor. If the coordinator receives a vote-abort message from any subtransaction,
it sends abort messages to all of the subtransactions, and they all abort, thus
aborting the logical transaction 7'. If the coordinator receives vote-commit
messages from all subtransactions (including itself), then it knows that T may
commit. The coordinator sends commit messages to all of the subtransactions.
Now, the subtransactions all know that T' can commit, and they take what
steps are necessary at their local site to perform the commitment, e.g., writing
in the log and releasing locks.

It is useful to visualize the subtransactions changing state in response to
their changes in knowledge about the logical transaction. In Figure 10.4, the





