w2
M
=2

DISTRIBUTED DATABASE MANAGEMENT

of taking a logical lock is translated into taking physical locks, in such a way
that the logical lock appears to be granted as an atomic action.

Global Transactions, Local Subtransactions, and Serializability

Similarly, global transactions may be composed of many local subtransactions,
each executing at a different site, and it is the job of the database system
to assure that the global transactions behave in a serializable manner. The
notion of “serializability” in a distributed database is a natural generalization
of the definition given in Chapter 9. A schedule of transactions on a distributed
database is serializable if its effect on the logical items is the same as that of
the transactions executing serially, that is, one-at-a-time, with each in its turn
performing all of its subtransactions at all the sites before the next transaction
begins.

Example 10.2: Suppose transaction T transfers $10 from account A to account
B. Suppose also that T is initiated at node Ny, copies of A exist at nodes
N3 and N3, and copies of B exist at Ny and Ns. Then T must initiate two
subtransactions that deduct 10 from the physical copies of item A at Ny and N3,
and also must initiate two subtransactions that add 10 to the physical copies of
B at N4 and N5. Thus, the global transaction T consists of local transactions
at each of the five nodes Ny, ..., N5, and the effects of these transactions must
be coordinated and made serializable. For example, the change to one copy of
an item must not be made in the permanent database if the same change to the
other copy is not guaranteed to be made eventually. That requirement holds
even if, say, N3 fails after A is updated at N>. In that case, we must be sure
that A will be updated at N3 when that node recovers. []

10.2 DISTRIBUTED LOCKING

Our first task, as we extend concurrency control concepts from the single-site
case to the distributed case, is to consider how locks on logical, or global, items
can be built from locks on physical, or local, items. The only thing we can do
with physical items is take a lock on a single physical copy A; of a logical item
A, by requesting the lock from the lock manager that is local to the site of A4;.

Whatever we do with physical copies must support the properties we expect
from locks on the logical items. For example, if we use read- and write-locks,
then we need to know that at no time can two transactions hold write-locks,
or a read- and a write-lock, on the same logical item. However, any number of
transactions should be able to get read-locks on the same logical item at the
same time. .

If there is but one copy of an item, then the logical item is identical with
its one physical copy. Thus, we can maintain locks on the logical item if and
only if we maintain locks on the copy correctly. Transactions wishing to lock

10.2 DISTRIBUTED LOCKING 547

an item A with one copy send lock-request messages to the site at which the
copy resides. The lock manager at that site can grant or deny the lock, sending
a back a message with its decision in either case.

However, if there are several copies of an item, then the translation from
physical locks to logical locks can be accomplished in several ways, each with
its advantages. We shall consider some of these approaches and compare the
numbers of messages required by each.

Write-Locks-All—Read-Locks-One

A simple way to maintain logical locks is to maintain ordinary locks on copies of
items, and require transactions to follow a protocol consisting of the following
rules defining locks on logical items.

1. To obtain a read-lock on logical item A, a transaction may obtain a read-
lock on any copy of A.

2. To obtain a write-lock on logical item A, a transaction must obtain write-
locks on all the copies of A.

This strategy will be referred to as write-locks-all.

At each site, the rules for granting and denying locks on copies are exactly
the same as in Chapter 9; we can grant a read-lock on the copy as long as no
other transaction has a write-lock on the copy, and we can only grant a write-
lock on the copy if no other transaction has either a read- or write-lock on the
copy.

The effect of these rules is that no two transactions can hold a read- and
write-lock on the same logical item A at the same time. For to hold a write-
lock on logical item A, one transaction would have to hold write-locks on all the
physical copies of A. However, to hold a read-lock on A, the other transaction
would have to hold a read-lock on at least one copy, say A;. But the rules
for locks on the physical copy A; forbid a transaction from holding a read-
lock at the same time another transaction holds a write-lock. Similarly, it is
not possible for two transactions to hold write-locks on A at the same time,
because then there would have to be conflicting write-locks on all the physical
copies of A.

Analysis of Write-Locks-All

Let us see how much message traffic is generated by this locking method. Sup-
pose that n sites have copies of item A. If the site at which the transaction is
running does not know how many copies of A exist, or where they are, then we
may take n to be the total number, of sites.? To execute WLOCK A, the trans-

2 Tt is worth noting that considerable space and effort may be required if each site is to
maintain an accurate picture of the entire distributed database, at least to the extent

548 DISTRIBUTED DATABASE MANAGEMENT

action must send messages requesting a lock to all n sites. Then, the n sites
will reply, telling the requesting site whether or not it can have the lock. If it
can have the lock, then the n sites are sent copies of the new value of the item.
Eventually, a message UNLOCK A will have to be sent, but we may be able to
attach this message to messages involved in the commitment of the transaction,
as discussed in Sections 10.4 and 10.5.

The messages containing values of items may be considerably longer than
the lock messages, since, say, a whole relation may be transmitted. Thus, we
might consider sending only the changes to large items, rather than the complete
new value. In what follows, we shall distinguish between

1. Control messages, which concern locks, transaction commit or abort, and
other matters of concurrency control, and
2. Data messages, which carry values of items.

Under some assumptions, control and data messages cost about the same, while
under other conditions, data messages could be larger and/or more expensive.
It is unlikely that control messages will be more costly than data messages.
Sometimes, we shall have the opportunity to attach control messages to data
messages, in which case we shall count only the data message.

When a transaction write-locks a logical item A, we saw by the analysis
above that it needed to send 2n control messages and n data messages. If one
of A’s copies is at the site running the transaction, we can save two control
messages and one data message, although we must still request and reserve a
lock at the local site. If one or more sites deny the lock request, then the lock
on A4 is not granted.

To obtain a read-lock, we have only to lock one copy, so if we know a site
at which a copy of 4 exists, we can send RLOCK A to that site and wait for a
reply granting the lock or denying the lock request. If the lock is granted, the
value of A will be sent with the message. Thus, in the simplest case, where
we know a site at which 4 can be found and the lock request is granted, only
two messages are exchanged, one control (the request), and one data (the reply,
including the value read). If the request is denied, it probably does not pay to
try to get the read-lock from another site immediately, since most likely, some
transaction has write-locked A, and therefore has locks on all the copies.

The Majority Locking Strategy

Now let us look at another, seemingly rather different protocol for defining locks
on logical items.

of knowing what items exist throughout the database, and where the copies are. For
this reason, among others, there is an advantage to using large items in a distributed
environment.

10.2 DISTRIBUTED LOCKING 549

1. To obtain a read-lock on logical item A, a transaction must obtain read-
locks on a majority of the copies of A.

2. To obtain a write-lock on logical item A, a transaction must obtain write-
locks on a majority of the copies of A.

We call this strategy the majority approach.

To see why majority locking works, note that two transactions each holding
locks on A (whether they are read- or write-locks doesn’t matter) would each
hold locks on a majority of the copies. It follows that there must be at least one
copy locked by both transactions. But if either lock is a write-lock, then there
is a lock conflict for that copy, which is not permitted by the lock manager at
its site. Thus, we conclude that two transactions cannot hold write-locks on
logical item A simultaneously, nor can one hold a read-lock while the other holds
a write-lock. They can, of course, hold read-locks on an item simultaneously.

Analysis of Majority Locking

To obtain a write-lock, a transaction must send requests to at least a majority
of the n sites having copies of the item A. In practice, the transaction is better
off sending requests to more than the minimum number, (n +1)/2,% since, for
example, one site may not answer, or another transaction may be competing
for the lock on A and already have locks on some copies. While a transaction
receiving a denial or no response at all from one or more sites could then send
the request to additional sites, the delay inherent in such a strategy makes it
undesirable unless the chances of a failed node or a competing transaction are
very small. We shall, however, take as an estimate of the number of request
messages the value (n+1)/2 and use the same value for the number of response
messages. Thus, assuming the lock is granted, n + 1 control messages are used.
Eventually n data messages with a new value of A will be sent, as well.

For a read, we must again send requests to at least (n + 1)/2 nodes and
receive this number of replies, at least one of which will be a data message
including the value that is read along with the lock on this copy of A. If the
transaction runs at the site of one of the copies, we can omit this message.
Thus, we estimate the number of messages for a read operation at n control
messages and one data messages (including a control portion).

Comparison of Methods

Before proceeding to some other methods for distributed locking, let us compare
the write-locks-all and majority methods. Each uses n data messages for a write
and one data message for a read. Write-locks-all uses 2n control messages for a
write and one for a read, while majority uses n+1 for write and n for read. Thus,

2 -

550 DISTRIBUTED DATABASE MANAGEMENT

if an equal number of read and write-locks are requested by typical transactions,
there is no advantage to either method. On the other hand, if most locks are
for reading, the write-locks-all method is clearly preferable, and if write-locks
dominate, we might prefer the majority method.

The two methods differ in a subtle way that affects the likelihood of a
deadlock. Using the write-locks-all approach, two transactions, each trying to
write logical item A, that begin at about the same time are likely each to
manage to obtain a lock on at least one copy of A. The result is a deadlock,
which must be resolved by the system, in one of a number of costly ways. In
comparison, under the majority approach, one of two competing transactions
will always succeed in getting the lock on the item, and the other can be made

to wait or abort.

A Generalization of the Two Previous Methods

The two strategies we have mentioned are actually just the extreme points in

a spectrum of strategies that could be used. The “k-of-n” strategy, for any

n/2 < k < n, is defined as follows:

1. To obtain a write-lock on logical item A, a transaction must obtain write-
locks on any k copies of A.

2. To obtain a read-lock on logical item A, a transaction must obtain read-
locks on any n — k& 4+ 1 copies of A.

To see that the method defines locks properly, observe that if one transac-
tion held a read-lock on logical item A, it would hold read-locks on n — k + 1
copies of A, while if another transaction simultaneously held a write-lock on
A, it would hold write-locks on % copies of A. Since there are only n copies of
A, some copy is read-locked and write-locked by different transactions at the
same time, an impossibility. Similarly, if two transactions simultaneously hold
write-locks on logical item A, then each holds locks on k copies of A. Since
k > n/2, some copy is write-locked by both transactions at the same time,
another impossibility.

What we referred to as “write-locks-all” is strategy m-of-n, while the ma-
jority strategy is (n + 1)/2-of-n. As k increases, the strategy performs better
in situations where reading is done more frequently. On the other hand, the
probability that two transactions competing for a write-lock on the same item
will deadlock, by each obtaining enough locks to block the other, goes up as
k increases. It is left as an exercise that we cannot do better. That is, if the
sum of the number of copies needed for a read-lock and a write-lock, or for two
write-locks is n or less, then physical locks do not imply logical locks.

Primary Copy Protocols

A rather different point of view regarding lock management is to let the re-

10.2 DISTRIBUTED LOCKING 551

sponsibility for locking a particular logical item A lie with one particular site,
no matter how many copies of the item there are. At the extreme, one node
of the network is given the task of managing locks for all items; this approach
is the “central node method,” which we describe shortly. However, in its most
general form, the assignment of lock responsibility for item A can be given to
any node, and different nodes can be used for different items.

A sensible strategy, for example, is to identify a primary site for each
item. For example, if the database belongs to a bank, and the nodes are bank
branches, it is natural to consider the primary site for an item that represents
an account to be the branch at which the account is held. In that case, since
most transactions involving the account would be initiated at its primary site,
frequently loc}cs would be obtained with no messages being sent.

If a transaction, not at the primary site for A, wishes to lock A, it sends
one message to the primary site for A and that site replies, either granting or
withholding the lock. Thus, locking the logical item A is the same as locking
the copy of A at the primary site. In fact, there need not even be a copy of A
at the primary site, just a lock manager that handles locks on A.

Primary Copy Tokens

There is a more general strategy than the simple establishment of a primary site
for each item. We postulate the existence of read-tokens and write-tokens, which
are privileges that nodes of the network may obtain, on behalf of transactions,
for the purpose of accessing items. For an item A, there can be in existence
only one write-token for A. If there is no write-token, then there can be any
number of read tokens for A. If a site has the write-token for A, then it can
grant a read or write-lock on A to a transaction running at that site. A site
with only a read-token for A can grant a read-lock on A4 to a transaction at
that site, but cannot grant a write-lock. This approach is called the primary
copy token method.

If a transaction at some site N wishes to write-lock A, it must arrange
that the write-token for A be transmitted to its site. If the write-token for A
is already at the site, it does nothing. Otherwise, the following sequence of
messages is exchanged:

1. N sends a message to all sites requesting the write-token.

2. Each site M receiving the request replies, either:
a) M either has no (read or write) token for A, or it has, but is willing
to relinquish it so V can have a write-token.
b) M has a read- or write-token for A and will not relinquish it (because
some other transaction is either using the token, or M has reserved
that token for another site).

