DISTRIBUTED DATABASE MANAGEMENT

@ Receive any
Send vote-abort Send
begin-vote or Timeout abort

e

Receive all
vote—commit

Send
prepare-commit

Send

commit

Committed

Figure 10.6(b) Coordinator in three-phase commit.

should the coordinator send any commit message prior to sending the. last of
the prepare-commit messages, then blocking is possible.

What is essential about three-phase commit is that the coordinator sends
all of the' prepare-commit messages out before it sends any commit message
.The Intuitive reason is that the prepare-commit message informs each art%c—.
ipant that all are willing to commit. If any participant T; receives comgit it
knows that the coordinator has sent all its prepare—commi; messages, and tl’uis
every p.articipant that is still live has received prepare-commit or is’ about t
;i;l) s0, since the message could be delayed but not lost by the network. That is.O
cofn zjcte.lpt of a commit message by T; tells 7} that all know all are willing t(;

T.ec'hnjcally, T; only knows that every participant T' either knows that all
are willing to commit, or 7" will know it shortly, or T will fail before it re-
ceives the prepare-commit. However, since the protocol of Figure 10.6 onl
involves messages between the coordinator and participants, and becailse as}-,

10.5 A NONBLOCKING COMMIT PROTOCOL 569

sumption (5) assures us messages are not lost, it can be assumed that messages
are received instantaneously. That is, when T; commits, every participant has
either received prepare-commit or has already failed. The reason is that if
some T actually fails after the time T} receives commit, but before T; receives
prepare-commit, then there would be no observable change in the activity of
the network if we assumed that T had failed before T; received commit. What
we have shown is that it is impossible for two participants to be simultaneously
in the Willing-to-commit and Committed states, respectively. This fact and
other useful observations about the protocol of Figure 10.6 are summarized in
the following lemma.

Lemma 10.1: Prior to transactions entering the recovery state, and under
the (justifiable) assumption that messages are delivered instantaneously, the
following states are incompatible.

a) One (live or failed) participant cannot have entered the Committed state
while any live participant is still in the Willing-to-commit state.

b) One (live or failed) participant cannot have entered the Aborted state while
another (live or failed) participant has entered the Committed state, or any
live participant has entered the Ready-to-commit state.%

Proof: For (a), we note that in order for a participant to enter the Committed
state before any recovery takes place, it must receive a commit message. By
the argument given above, we know that every live participant has (on the
assumption of instantaneous messages) received prepare-commit, and therefore
has left the Willing-to-commit state.

We leave (b) as an exercise. The reader has only to examine Figure 10.6 and
argue that a prepare-commit message cannot be sent if one or more participants
have aborted. [

Recovery in Three-Phase Commit

The consequence of Lemma 10.1 is that we cannot have a failed participant that
has aborted if any live transaction has reached as far as the Ready-to-commit
state, and we cannot have a failed participant that has committed if any live
transaction is still in the Willing-to-commit state. Thus, when one or more
participants detect the need for recovery, because of a timeout, we have only
to arrange that each live participant discloses to the others its state, or more
precisely, its state just before it entered the Recovery state. If all are in Willing-
to-commit or Aborted, then we know no failed participant has committed, and
it is safe for all to abort. If any has reached the Ready-to-commit state or the

9 In fact, it is not even possible for a failed participant to have entered Ready-to-commit,
but we state the conditions this way because we want them to be weak enough that
they are preserved during the recovery process.



570 DISTRIBUTED DATABASE MANAGEMENT

Committed state, then no failed transaction can have aborted, so it is safe for
all to commit.

In the latter case, the distributed commitment process must be taken by
steps. That is, any participants still in the Willing-to-commit state must first
be brought to the Ready-to-commit state, and then all those in that state must
be made to commit. The reason we must continue in stages is that at any time,
more participants may fail, and we must avoid creating a situation where one
participant is in Willing-to-commit while another has already committed.

Electing a New Coordinator

As with two- or three-phase commit in general, the recovery process can be con-
ducted in several different ways. As we have considered only the centralized, or
coordinator-based approach, because it tends to save messages, let us continue
with that approach now. Then as soon as one participant realizes recovery is
needed, it sends a message to all the other participants. Several participants
may reach this conclusion at about the same time, so many redundant messages
will be sent in the worst case, but not in the typical case.

Then, the live participants must attempt to elect a new coordinator, be-
cause the only time we enter the Recovery state is if a participant has timed out
waiting for the coordinator to send a message. Each participant knows the orig-
inal set of participants, although some now are failed. We may assume that the
participants are numbered T7,...,T}, and the lowest-indexed live participant
will be the new coordinator. Since 7} may have failed, we cannot just assume
T} is the new coordinator. Rather, each participant must make known to the
others that it is live. If done properly, at most one live participant will conclude
that it is the new coordinator (because it never heard from any lower-numbered
participant).

One relatively efficient way to make the decision is for each T; to send a
message with its index, 4, to Ty, Tjyo,.. -y T} in that order. However, if T}
receives a message from a lower-numbered participant, then T; knows it is not
the coordinator, and so stops sending messages. Most participants will stop
sending messages very quickly, but if some messages are delayed inordinately,0
then on the order of k2 messages could be sent.

After this step, each live participant will have a notion of who the new
coordinator is. If no failures occurred during the election, then all will have
the same notion. However, if the lowest-numbered participant failed during the
election, then there may be disagreement regarding who is the coordinator.

10 Note we are no longer assuming messages are sent instantaneously; that assumption was
justified only by the pattern of messages (to and from the coordinator) that is present
in the basic three-phase commit algorithm.

1
10.5 A NONBLOCKING COMMIT PROTOCOL o7

Example 10.6: Suppose there are participants T, ..., Ta. Also suppose that
during the election, the following sequence of events occurs.

1. T sends a message to T3 before T can send its own message to T3. Thus,
T, never sends any messages.

2. Ty fails. o .
3. T sends a message to Ty. Ty is thereby inhibited from sending any mes-
sages. '

The net effect of these events is that Ty thinks 77 .is the c'oordinator3 while
Ty and 74 both think T3 is the coordinator. After a suitable timeout Perxod, S0
it can be determined that no more messages are being sent, T3 starts its roll as
coordinator by requesting the state of all participants.’! []

It is easy tg) show that no more than one live participant can think it is the
new coordinator. For suppose T; and T; both are live 'a,nd thl_nk they are the
coordinator, where i < j. Since T; thinks it is the coort.imator., it never received
a message from any participant lower than . .Thus,. it Con.tmued to send hout
messages to the participants numbered above ¢, and in particular to 7;. Thus,
T; would not think it is the coordinator. o . .

1t is possible that no live participant thinks it is the coordinator, in whic
case the live participants will time out waiting for the recovery to begin. They

will then elect a new coordinator.

The Recovery Algorithm

With these tools, we can describe an appropriate recovery algorithm. to use
with three-phase commit. This recovery strategy has the pyo_perty that .1t never
causes a participant to block, as long as at least one pa.rt1c11.)ant remains live.
Unfortunately, it is not possible to avoid blocking in a S1tuat10'n .Where all par-
ticipants fail, and then one recovers and finds it is in .the Wﬂhng—to-comnyt
state. As discussed in Example 10.4, in connection with two-phase C(_)n}rmt,
such a participant cannot rule out the possibility that some other. partlcu?ant
is aborted, nor can it rule out the possibility that another committed. Thus,
it must block and wait for more participants to recover. The steps taken for
recovery are summarized as follows:
1. The live participants elect a new coordinator. _ ‘
9. The new coordinator sends messages to all participants request{nig their
state immediately prior to recovery, which must be Al_)c?rted, Willing-to-
commit, Ready-to-commit, or Committed. Fa,iled. partlcxpaqts, of course,
will not reply, so the coordinator waits for the timeout period and then

11 The timeout period need not be long. It can be based on the expected time fo,r each 7;,1
to receive a message from Tj. If some T; thinks it is the coordinator and isn’t, it wi

get a message to that effect from some participant.



576 DISTRIBUTED DATABASE MANAGEMENT

and there is nothing else we can do. However, if there are other copies of A4,
then we can proceed as if the copy at NV did not exist. When N recovers, it not
only has the responsibility to find out about the transactions being committed
or aborted when it failed, but now it must find out which of its items are out
of date, in the sense that transactions have run at the other sites and modified
copies of items that, like A4, are found at IV and also at other nodes.

Obtaining Up-to-Date Values

When the failed site resumes activity, it must obtain the most recent values for
all its items. We shall suggest two general strategies for doing so.

1. If site M discovers that site IV has failed, M records this fact in its log.
When IV recovers, it sends a message to each site. If M receives such
a message, M examines its log back to the point where it discovered N
had failed, and sends the most recent value it has for all items it holds in
common with N.15 The values of these items must be locked while the
recovery of IV is in progress, and we must be careful to obtain the most
recent value among all of the sites with copies. We can tell the most recent
values, because all transactions that have committed a value for item A
must have done so in the same order at all the sites of 4, provided we have
a torrect locking method. If we are using timestamp-based concurrency
control, the write-times of the values determine their order.

2. All copies of all items may be assigned a write-time, whether or not time-
stamp concurrency control is in use. When a site IV recovers, it sends for
the write-times of all its items, as recorded in the other sites. These items
are temporarily locked at the other sites, and the current values of items
with a more recent write-time than the write-time at IV are sent to IV.

This description merely scratches the surface of the subject of crash man-
agement. For example, we must consider what happens when a site needed to
restore values to a second site has itself failed, or if a site fails while another
is recovering. The interested reader is encouraged to consult the bibliographic
notes for analyses of the subject.

10.8 DISTRIBUTED DEADLOCKS

Recall from Section 9.1 that we have simple and elegant methods to prevent
deadlock in single-processor systems. For example, we can require each transac-
tion to request locks on items in lexicographic order of the items’ names. Then
it will not be possible that we have transaction T} waiting for item A; held by

15 Note that under the methods of locking and commitment described in this chapter, M
must discover IV has failed if there is a transaction that involves any item held by both
N and M, so N will hear of all its ont-of-date items.

10.8 DISTRIBUTED DEADLOCKS LY #

T,, which is waiting for A, held by T3, and so on, while T} is waiting fo'r A.k
held by Ty. That follows because the fact that T3 holds a Ioc-k 911 A, while it
is waiting for A, tells us A; < Ay in lexicographic order. Similarly, we may
conclude Ay < Asz--- A < Ay, which implies a cycle in the lexicographic order,
an impossibility.

With care, we can generalize this technique to work for distributed data-
bases. If the locking method used is a centralized one, where individual items,
rather than copies, are locked, then no modification is needed. I.f we use a
locking method like the k-of-n schemes, which lock individual copies, we can
still avoid deadlocks if we require all transactions to lock copies in a particular
order:

1. If A < B in lexicographic order, then a transaction 7" must lock all the
copies of A that it needs before locking any copies of B.

2. The copies of each item A are ordered, and a transaction locks all copies
of A that it needs in that order.

Even if it is possible under some circumstances to avoid deadlock by ju-
dicious ordering of copies, there is a reason to look elsewhere for.a methqd of
dealing with deadlocks. We discussed in Example 9.21 why it is spmetunes
difficult to predict in advance the set of items that a given transaction needs
to lock. If so, then locking needed items in lexicographic order is either not
possible or requires the unnecessary locking of items.

In the remainder of this section we shall take a brief look at some general
methods for deadlock detection and deadlock avoidance that do not place con-
straints on the order in which a transaction can access items. First, we consider
the use of timeouts to detect and resolve deadlocks. Next, the construction of
a waits-for graph is considered as a detection mechanism. Finally, we consider
a timestamp-based approach to avoiding deadlocks altogether.

Deadlock Resclution by Timeout

A siniple approach to detecting deadlocks is to have a transaction time out and
abort if it has waited sufficiently long for a lock that it is likely to be involved
in a deadlock. The timeout period must be sufficiently short that deadlocked
transactions do not hold locks too long, yet it must be sufficiently long that we
do not often abort transactions that are not really deadlocked.

This method has a number of advantages. Unlike the waits-for-graph ap-
proach to be described next, it requires no extra message traffic. Unlike the
timestamp-based methods to be described, it does not (usually) abort transac-
tions that are not involved in a deadlock. It is prone, however, to aborting all
or many of the transactions in a deadlock, rather than one transaction, which
is zenerallv sufficient to break the deadlock.



878 DISTRIBUTED DATABASE MANAGEMENT

Waits-for-Graphs

We m‘entioned in Section 9.1 that a necessary and sufficient test for a deadlock
in a single-processor system is to construct a waits-for graph, whose nodes are
the transactions. The graph has an arc from T} to T3 if Ty is waiting for a lock
on an item held by T5. Then there is a deadlock if and only if there is a cycle in
this graph. In principle, the same technique works in a distributed environment.
The trouble is that at each site we can maintain easily only a local waits-for
graph, while cycles may appear only in the global waits-for graph, composed of
the union of the local waits-for graphs.

Exampﬁe 10.7: Suppose we have transactions 7; and T, that wish to lock
items A and B, located at nodes N, and Np, respectively. A and B may be
copies of the same item or may be different items. Also suppose that at V4
(a subtransaction of) T, has obtained a write-lock on A, and (a subtransactior;
of) T3 is waiting for that lock. Symmetrically, at Ng T has a lock on B, which

Ty is waiting for.

(a) Local waits-for graph at Ny4.

@ = @

(b) Local waits-for graph at Np.

@B

(c) Global waits-for graph.

Figure 10.7 Global deadlock detection.

The local waits-for graphs at N4 and Ny are shown in Figure 10.7(a) and
(b); clt?arly each is acyclic. However, the union of these graphs is the cycle
shown in Figure 10.7(c). As far as we can tell at either of the sites Ny or Ny
there might not be a deadlock. For example, from N4 alone, we cannot be suré
that anything prevents 7% from eventually committing and releasing its lock on
A, then allowing Ty to get the lock. [J

Example 10.7 illustrates why in order to detect cycles it is necessary to
send n‘zessa,ges i'jhat allow a global waits-for graph to be constructed. There are

10.8 DISTRIBUTED DEADLOCKS 579

1. Use a central node to receive updates to the local waits-for graphs from all
of the sites periodically. This technique has the advantages and disadvan-
tages of centralized methods of locking: it is vulnerable to failure of the
central node and to concentration of message traffic at that site,'® but the
total amount of traffic generated is relatively low.

2. Pass the current local waits-for graphs among all of the sites, preferring
to append the local graph to another message headed for another site if
possible, but sending the local graph to each other site periodically any-
way. The amount of traffic this method generates can be much larger than
for the central-node method. However, if the cost of messages is relatively
invariant to their length, and frequently waits-for information can be “pig-
gybacked” on other messages, then the real cost of passing information is
small.

Timeliness of Waits-for Graphs

In either method described above, the union of the local waits-for graphs that
any particular site knows about currently does not have to reflect the situation
that existed globally at any particular time. That doesn’t prevent the detection
of deadlocks, since if a cycle in the global waits-for graph exists, it won’t go
away until the deadlock is resolved by aborting at least one of the transactions
involved in the cycle. Thus, the arcs of a cycle in the global graph will eventually
all reach the central node (in method 1) or reach some node (in method 2), and
the deadlock will be detected.

However, errors in the opposite direction can occur. There can be phantom
deadlocks which appear as cycles in the union of the local waits-for graphs that
have accumulated at some site, yet at no time did the global waits-for graph
have this cycle.

Example 10.8: The transaction T3 in Example 10.7 might decide to abort
for one of several reasons, shortly after the local graph of Figure 10.7(a) was
sent to the central site. Then the graph of Figure 10.7(b) might be sent to the
central site. Before an update to Figure 10.7(a) can reach the central site, that
node constructs the graph of Figure 10.7(c). Thus, it appears that there is a
deadlock, and the central node will select a victim to abort. If it selects T3,
there is no harm, since Ty aborted anyway. However, it could just as well select
T4, which would waste resources. [

Timestamp-Based Deadlock Prevention

We mentioned schemes that avoid deadlocks by controlling the order in which

16 Nnta that in camnarienn cantralizad ar ennrdinatar-haeed dictrihnted caommit nrotnenls



580 DISTRIBUTED DATABASE MANAGEMENT

items are locked by any given transaction, e.g., locking in lexicographic order or
taking all locks at once. There also are schemes that do not place constraints on
the order in which items are locked or accessed, but still can assure no deadlocks
occur. These schemes use timestamps on transactions, and each guarantees that
no cycles can occur in the global waits-for graph. It is important to note that
the timestamps are used for deadlock avoidance only; access control of items is
still by locking.

In one scheme, should (a subtransaction of) T} be waiting for (a subtransac-
tion of) 7%, then it must be that the timestamp of T} is less than the timestamp
of Ty; in the second scheme, the opposite is true. In either scheme, a cycle in
the waits-for graph would consist of transactions with monotonically increasing
or monotonically decreasing timestamps, as we went around the cycle. Nei-
ther is possible, since when we go around the cycle we come back to the same
timestamp that we started with.

We now define the two deadlock avoidance schemes. Suppose we have
transactions 77 and Ty with timestamps ¢; and t, respectively, and a sub-
transaction of T} attempts to access an item A locked by a subtransaction of
Ts.

1. In the wait-die scheme, T} waits for a lock on A if t; < #o, i.e., if Ty is the
older transaction. If #; > t5, then T} is aborted.

2. In the wound-wait scheme, T} waits for a lock on A if t1 > ta. If t; < tg,
then T3 is forced to abort and release its lock on A to 73.17

In either scheme, the aborted transaction must initiate again with the same
timestamp, not with a new timestamp. Reusing the original timestamp guar-
antees that the oldest transaction, in either scheme, cannot die or be wounded.
Thus, each transaction will eventually be allowed to complete, as the following
theorem shows.

Theorem 10.3: There can be neither deadlocks nor livelocks in the wait-die
or the wound-wait schemes.

Proof: Consider the wait-die scheme. Suppose there is a cycle in the global
waits-for graph, i.e., a sequence of transactions T7, ... , Iy such that each T; is
waiting for release of a lock by 741, for 1 < i < k, and T} is waiting for T7. Let
t; be the timestamp of 7T5. Thent; <ty < -+ < ity < t1, which implies #; < #;,
an impossibility. Similarly, in the wound-wait scheme, such a cycle would imply
t1 >y > -+ > i > t1, which is also impossible.

To see why no livelocks occur, let us again consider the wait-die scheme. If

17 Incidentally, the term “wound-wait” rather than “kill-wait” is used because of the image

that the “wounded” subtransaction must, before it dies, run around informing all the
other subtransactions of its transaction that they too must abort. That is not really
necessary if a distributed commit algorithm is used, but the subject is gruesome, and
the less said the better.

10.8 DISTRIBUTED DEADLOCKS 5381

Method Messages Phantom Other
aborts
Timeout None Medium Can abort more

number than one trans-
action to resolve
one deadlock

Waits-for Graph Medium Few Vulnerable to
Centralized traffic node failure,
bottlenecks

Waits-for Graph High Few
Distributed traffic
Timestamp None Many

Figure 10.8 Comparison of deadlock-handling methods.

T is the transaction with the lowest timestamp, that is, T is the oldest trans-
action that has not completed, then T' never dies. It may wait for younger
transactions to release their locks, but since there are no deadlocks, those 10(.:k.s
will eventually be released, and T' will eventually complete. When T first initi-
ates, there are some finite number of live, older transactions. By the ar_gumer.xt
above, each will eventually complete, making T' the oldest. At that point, T is
sure to complete the next time it is restarted. Of course, in ordinary operation,
transactions will not necessarily complete in the order of their age, and in fact
most will proceed without having to abort.

The no-livelock argument for the wound-wait scheme is similar. Here, the
oldest transaction does not even have to wait for others to release locks; it takes
the locks it needs and wounds the transactions holding them. [

Comparison of Methods

Figure 10.8 summarizes the advantages and disadvantages of the methods we
have covered in this section. The column labeled “Messages” refers to the
message traffic needed to detect deadlocks. The column “Phantom ab.orts”
refers to the possibility that transactions not involved in a deadlock will be

required to abort.





