716 QUERY OPTIMIZATION FOR DATABASE SYSTEMS

rsuy (T), then p[S] is in mg(T) and p[Y] is in my (7). Thus, 4 is in
71'5(T) X 7I'y(T)

Now, we use the fact that the relations to which step (3) applies are re-
duced. First, we note that 7g(T) = S, since S is one of the relations in the join
T, and S has no dangling tuples. Thus, the size of 75(T') is no greater than I,
since surely S is no larger than the entire input.

Second, we note that my(T') can be no larger than U. The proof consists
of two observations

1. wy(T) = my(Ry p< --- > Ry). The reason is that, because the relations
are reduced, every tuple in T extends to at least one tuple over all of the
attributes, when all of the relations Ry, ..., Ry are joined.

9. Y C X, s0my(Ryv<---pa Ry) can be no larger than mx (Ry < b Rg).

But mx(Ry < --- b4 Ry,) is the output, so (1) and (2) imply that the size of
7y (T) is no greater than U. We may now involke (11.42) to argue that wsuy (T)
has size no greater than 27U. In detail, let ¢; be the number of tuples in 7s (T)
and %, be the number of tuples in my (7). Let [; be the length of a tuple in
75(T) and I be the length of a tuple in 7y (T'). Then l1t1 < I, and lpts < U.
Now msuy(T) has at most ¢3¢, tuples, by (11.42), and their length is I3 + la.
Thus, its size is at most (I; + l2)t1t2. Finally, observe that Iy +1Ip < 21115.%°
Thus, the size of msuy (T') is no more than 20;lt1ty = 2IU. O

Theorem 11.8: For a fixed query of the form (11.38), Algorithm 11.4 requires
communication cost and running time that are polynomial in the size, I, of
its input relations, the size, U, of its output relations, and the number, &, of
relations in the join of (11.38).

Proof: Step (1), applying the full-reducer semijoin program, requires o)

communication and O (k(1 log I +U log U)) total computation time, as we have
seen. Step (2), construction of a parse tree, is implicit in the discovery of
the full reducer. To find the full reducer or the parse tree takes time at most
the product of the number of hyperedges times the number of nodes in the
hypergraph constructed from (11.38). On the assumption that there are no
empty relations in the input, the size of the hypergraph cannot exceed I, and
if there are empty relations, that fact can be discovered in O(k) time and the
empty relation produced as the output immediately, without performing steps
(3) and (4) of Algorithm 11.4. We conclude that O(kI) time suffices to find
the full reducer for step (1) and to find the parse tree in step (2), in all but the
trivial case where there is an empty relation. Thus, we can neglect the cost of
step (2), since the estimate we use for step (1) is higher, both in transmission

39 Of course, nsually, {1 + [z is much less than l;l3. However, because of the possibility
that I; = I3 = 1, we need the factor 2 so the claim holds generally.

11.15 THE SYSTEM R* OPTIMIZATION ALGORITHM 717

cost [there is none in step (2)] and in computation cost.

For step (3), we must transmit k — 1 relations; none are larger than 2/U,
by Lemma 11.1. Thus, the total transmission cost is O(kIU). This amount
dominates the transmission cost of step (1), and can be taken to be, within
a constant factor, the transmission cost of the entire algorithm. For the com-
putation cost, we take k — 1 joins, whose input and output relations are all
bounded by size 2IU. Thus, a method such as sort-join offers running time
O(IUlog(IU)) per join, for a total cost of O(kIU log(IU)).

Finally, the projection of step (4) requires no communication and takes
time O(IU). We conclude that step (3) dominates both the transmission cost
and the total computation time, so the algorithm as a whole has transmission
cost O(kIU) and running time O(kIU log(1U)). [J

11.15 THE SYSTEM R* OPTIMIZATION ALGORITHM

System R* is the experimental extension of System R to the distributed environ-
ment. Like its parent, it performs optimization in an exhaustive way, confident
that the cost of considering many strategies will pay off in lower execution costs
for queries.

The optimization algorithm applies to an algebraic query of the kind dis-
cussed in Section 11.11, where the expression to be optimized represents the
query applied to logical relations, which in turn are expressed in terms of phys-
ical relations. The operators assumed to appear in the query are the usual
select, project, natural join, and union, plus a new operator CHOICE, which
represents the ability of the system to choose any of the identical, replicated
copies of a given relation. That is, if relations Ry, Rz, and R3 are copies of one
relation, at different nodes, and 93 and S are also copies of another relation,
then we might express the join of these two relations as

CHOICE(Rl,Rz,Rg,) > CHOICE(Sl, 52)

We could, for example, save transmission cost by picking copies of R and S5 that
were at the same node and joining them there.

One modification we shall make to expression trees is to combine nodes
having the same associative and commutative binary operator into a single
node, provided the nodes being combined form a tree, with no intervening
nodes labeled by other operators. The three binary operators, union, natural
join, and choice, are all associative and commutative, so this rule applies to
each of them. A tree of nodes labeled by just one of these binary operators we
shall call a cluster. All the nodes of a cluster will be replaced by a single node,
and the children of the nodes in the cluster become children of the new node.
The parent of the new node is the same as the parent of the one node in the
cluster that is an ancestor of all the nodes in the cluster. The result of these
operations we call a compacted tree.

718 QUERY OPTIMIZATION FOR DATABASE SYSTEMS

Bx

BExample 11.38: The expression tree in Figure 11.32(a) is replaced by the tree
in Figure 11.32(b). We have combined the two nodes labeled U, since they form
a cluster, and the three nodes labeled < also happen to be arranged in a tree;
thus they are a cluster and are replaced by a single node. [

U//U\M R/S\m
NN AN
T/ \U V/ \W

(a) (b)

U

Figure 11.32 Replacement of clusters by single nodes.

Let us now enumerate the strategies for evaluation that System R* consid-
ers. We shall assume that each relation is at a single site. If a relation is repli-
cated, then we shall give the replicas different names, and apply the CHOICE
operator to the collection of replicas. We assume also that the query asks for
a specific expression to be computed at a specific site of the network; the ex-
pression is represented as a compacted tree. The algorithm below considers all
ways to evaluate the nodes of the compacted tree, taking into account

1. The various orders in which an operator like union or join of many relations
can be performed as a sequence of binary steps,

2. The various sites at which each node of the tree could have its result com-
puted, and

3. Several different ways that the join could be computed.

The Cost Function

When the algorithm considers each of the options listed above, it must evaluate
the cost of these methods. The actual cost function used in System R* is
quite complex; it takes account of the computation cost at a site as well as the
transmission cost. We have had the flavor of the sort of analysis that is used at
a single site in Section 11.2, so we shall, for simplicity, take a less detailed cost

11.15 THE SYSTEM R* OPTIMIZATION ALGORITHM 719

function that only accounts for the transmission cost. That is, as in Section
11.11, we shall assume that the cost of sending a message is, in appropriate
units, equal to the number of tuples sent, plus a constant co.

Join Methods

The options for taking a union of two relations are fairly clear. We can ship one
relation to the site of the other or ship them both to a third site. The costs of
these three approaches are obvious, given the cost function above. The options
given a CHOICE operator are also clear; the cost is zero for any site at which
one of the relations in the choice resides, and otherwise the cost equals the cost
of shipping one of the replicas to the desired site. Which replica is shipped
doesn’t matter, since the costs are the same, under our model.

However, with the join of two relations R and 5, the set of options is not
so well defined. The algorithm to be described has five options that can always
be used, and two others that can be used when R and S are both at the same
site. These options are the following.

1. Ship R to the site of S and compute the join there. The cost is ¢g plus the
size of R.
2. Ship S to the site of R and compute the join there. The cost is ¢g plus the
size of S.
3. Ship R and S to a third site and compute the join there. The cost is 2¢p
plus the sum of the sizes of R and 5.
4. Perform a semijoin S b< R, before obtaining the relevant tuples of 5 and
moving them to the site of R. That is, compute mrrs(R) at the site of
'R, ship these tuples to the site of S, and there compute S p< R. Ship
the result to the site of R. The cost of this method is estimated to be
2¢o + Tr(1 + Ts/I), where T and Ts are the number of tuples in R and
S, and T is the “image size,” that is, the size of the projection of S onto
RN S. That is, at most Tr tuples are shipped from the site of R to the
site of S, and therefore TpTs/I is an upper bound on the average number
of tuples shipped back to the site of R.*° We could estimate the cost more
closely by considering the size of mrns (), but this method will only make
sense when R is very small anyway.
There is another method similar to (4), in which the roles of R and 5 are
reversed.
We call strategies (1)—(3) fetches. Strategies (4) and (5) are referred to as

lookups.
If R and S are at the same site, there are several other strategies we shall

consider.

(@2

40 Tg is another upper bound, but this method is, in practice, only used when Tg < I.

720 QUERY OPTIMIZATION FOR DATABASE SYSTEMS

6. Compute the join at the site of the two relations and leave it there. Since
we charge only for transmission in our simple model, the cost of this action
is zero.

7. Compute the join at the site of the two relations and ship the result to
another site. The cost is the cost of shipping the result relation. Note that
we could also use strategy (3), shipping the unjoined relations to a new
site and joining them there. Which is preferable depends on how the size
of the join compares with the sum of the sizes of R and S.

The Algorithm for Selecting an Evaluation Strategy

We can now present our simplified version of the System R* algorithm for query
evaluation.

Algorithm 11.5: Selecting a Processing Strategy for a Distributed Query.

INPUT: A query in the form of a compacted tree, with operators select, project,
join, union, and choice, sites for all of the argument relations, guard conditions
for these relations, and a site at which the result must appear.

QUTPUT: A preferred order of application of the operators and sites at which
the results of these operations should appear.

METHOD: The first stage of the algorithm is to generate all of the possible eval-
uation sequences; representing them as ordinary expression trees, with binary
operators. We begin by pushing selections and projections as far down the tree
as possible, using Algorithm 11.2. When we encounter a CHOICE operator,
we push the selection or projection to each child of a node labeled CHOICE.
We also use the technique of Section 11.11 to eliminate subtrees whose guard
conditions conflict with a selection and to eliminate redundant guard conditions
as in Example 11.26.

‘We then proceed up the tree, beginning at the leaves. On visiting a node,
we generate for that node a set of expression trees, each of which must be
considered when finding the least cost application order.

Basis: The basis, a leaf node labeled R, yields a set consisting of the one
expression, R.

Inductive Step: Let n be a node of the compacted tree. Suppose the children
of n, say ¢i,...,Ck, have each been processed, so we have for each child c; a set
&S; of expressions.

Case 1: If the operator at n is selection or projection, then & = 1, and we form
the set of expressions for by applying the same operator as is at n to the root
of each expression tree in Sy.

Case 2: If the operator is CHOICE, the set of expressions for n is the union
of the S;’sfori=1,2,...,k.

11.15 THE SYSTEM R* OPTIMIZATION ALGORITHM 721

Case 3: If the operator at n is U, we consider all unordered binary trees with &
leaves. For example, Figure 11.33(a) shows the three unordered trees with three
leaves designated a, b, and c¢. Since the children of each node are unordered,
the first of these could as well have been exhibited as any of the trees in Figure
11.33(b), where we have shown the two different orders of a and b, and the two
different orders of ¢ and the parent of @ and b, in all possible combinations.

a . b a c b c

(a) The three unordered binary trees with three leaves.

)
VAR

(b) The four ordered trees that are represented by one unordered tree.

a b

Figure 11.33 Illustration of unordered trees.

Tt is sufficient to consider only unordered trees; the way we group operands
of a union may make a difference in the efficiency, but there can be no difference
whether we compute E; U By or Eo U Ey. A similar remark holds for the join
operator, to be discussed next. We complete construction of the expressions
for node n by taking each of the unordered trees, with interior nodes labeled
U, and placing at the leaf for ¢; any of the expression trees in S;, making the
replacements for the leaves in all possible ways.

Case 4: If the label of n is b<, we proceed exactly as for a union, except that <
labels the interior nodes of the unordered tree.

Now we must do the second stage of the algorithm, the computation of
the best evaluation strategy for each of the expression trees constructed for the
root by the first phase. We now have binary trees, and again we work on each
tree from the leaves up. At each node, we must compute the cost of evaluating
the expression whose root is at that node, with the result left at each of the
possible sites. Remember that the exact cost of operations depends not only

722 QUERY OPTIMIZATION FOR DATABASE SYSTEMS

on the formula for charging for messages shipped, which we take to be co plus
the message length, but also on our estimate of the size of relations computed
by the subexpressions. We shall assume that such an estimate is available, and
later, we shall give an example of one possible way of making the estimate.

Basis: At a leaf node labeled R, the cost of evaluation at the site of R is zero,
and the cost of evaluation at any other site is equal to the cost of shipping R,
that is, co plus the number of tuples in R.

Inductive Step: Consider an interior node n. If the label of n is a selection
or projection, then that operation can be performed at the same site that the
expression rooted at the child of n was computed. Thus, the least cost to
compute n at site « equals the cost of computing the child of n at a.

Suppose the label of n is U. To find the least cost of computing n at site
a, we find the minimum over all sites 8 and v, of the cost of computing the
children of n at 3 and v, plus (if 3 # «) the cost of shipping the first child’s
result, plus (if 7 # «) the cost of shipping the result of the second child.

If the label of n is &<, we consider, for each site , the cost of computing the
children of . at some sites 3 and 7, and using any of the join methods (1)~(7)
described prior to Algorithm 11.5 that apply. The least cost method is chosen
to evaluate n, of course.

Having computed the cost of evaluating each of the expressions in our set
at each of the sites, we find that expression with the lowest cost of evaluation for
the desired output site. We must also consider the cost of computing the result
at another site and shipping the result to the desired site. Having found the
least cost expression, we must find the evaluation method used at each node.
The proper evaluation method for a node is the one that assigned the least cost
to that node. We can either recompute costs for the winning tree, to see which
method is best at each node, or as we evaluate all of the possible trees, we can
label each node with the proper method to use. []

Example 11.40: We shall give a simple illustration of the calculations involved
in Algorithm 11.5. First, we must settle on a way of estimating the sizes of the
results of operations, in particular, the join. We shall assume we know for each
relation R and each subset X of the attributes in R’s relation scheme, an image
size, that is, the expected number of tuples in mx(R). As a special case, we
know the expected number of tuples in R itself, since we may let X = R.
Suppose R and S are two relations to be joined, and let Tg and T's be our
estimates of the numbers of tuples in these relations. Let the image sizes for
the set of attributes RN S be Iy and Is for R and S, respectively. A plausible
estimate of the size of R 1 S begins by considering the smaller of Ip and Is;
say it is . Then we shall suppose that each member of mrns(R) is present in
the larger set mpns(5). In fact, we shall assume that each tuple in R joins with
an average number of tuples from S, that is Ts/Is tuples. Thus, the size of

11.15 THE SYSTEM R* OPTIMIZATION ALGORITHM 723

R S is estimated to be TrTs/Is, or more generally, considering that either

image size could be smaller,
TrTs
maz(Ir,Is)
Note that this formula agrees with (11.13) in Theorem 11..2, as long as we mgk;
the simplifying assumption that either all common attnbgtes A Xfc RRaz
satisfy the inclusion dependency R.A C S.A, or they all s.at.lsfy S.AC 1 t: -
Suppose that our expression requires us to take the join .of thrée rela 1oﬁ
P(A, B), Q(B, C), and R(C, D), which are located at three different 51‘tes a,.t},l
and -, respectively. As in Figure 11.33, there are three unordered tleei Wéh
leaves labeled P, @, and R, corresponding t0 the fact that we cc?uld take te
join of any two of the three relations first. Let us assume the following constants

for the problem.

1. Tp=10,Tg = 1000, and Tr = 100. . '

9. The image size Ipp, the estimated size of mp(P), is 10.
3. The image size Igp is 20.

4. Igc = 500.

5. Ipc = 25.

6. co=10.

Let us first consider joining P and Q first, and then joining Fhe result with
R. If we wish to compute the result at site a, we have two cho1.ces. We could
fetch Q to a, at a cost of co+Tg =10+ 1000 = 1010. Alternatively, we could

examine each of the ten tuples of P and ‘loo
each of them. The cost of this operation 18

9co + Tp(L +Tq/Igs) = 20 +10(1 + 50) = 530

Thus, the cost of computing P > Q at site o is min(1010,600) = 600.

If we wished to, evaluate P > Q at (3 instead, then there would be the two
symmetric strategies, where we do a fetch or a lookup of P. The costs o—f ;%;%e
operations are, respectively, co + Tp =20 an'd 2¢co + ’le(l + Tp/prB) = 2020.
We therefore prefer the fetch operation in this case, with a cost of 20. ’

Finally, we must evaluate the cost of computing P >4 Q.at ~. Here we .nt1}1115t
ship both relations to v at a cost of 2co+Tp +TQ‘ = 1030.. 'It is worth notm'g ha
we could do better by shipping P to 3, computmg; the join there, and sh1p1?1ng
the result to . However, there is no need to consldgr this approacl.l now,‘su}lrci
when we compute the cost of the complete expression, we shall chscove.l .t at
it is cheaper to evaluate P < Q at j even if we want tl.le result of that join E
4. On the other hand, if P > Q were the final expression, and we Wax‘ltedlt (z
result at v, Algorithm 11.5 would tell us it is cheaper to compute the result a

3 and ship.
Now we must consi

kup the matching tuples of @ for

der the cost of evaluating the entire expression,

724 QUERY OPTIMIZATION FOR DATABASE SYSTEMS

(P1Q)>aR

at each of the three sites. To begin, we must obtain our estimate of the size of
P a (). By the formula explained above, this size is

TPQ = TpTQ/?”Ilal‘(pr,IQB) =10 x 1000/20 =500

We can also estimate an image size for Ipgc, the projection of P < @
onto C'. Each of the 500 C-values appearing in @ is present in Tg/Igc tuples
that is, two tuples. As the ratio of Ipp to Igp is 1/2, and we assume everj;
B-value in P is also present in @, it follows that half the tuples in @ will have
a matching B-value in P, and will appear in the join. Thus, of the two tuples
with C-value ¢, the probability is 3/4 that at least one of them will appear in
the j‘oin, Thus the image size Ipgc will be approximately ;?;-IQC = 375.

Finally, we shall need an estimate for the size of the join of all three rela-
tions. By our estimating rule, this number is

TPQR = TPQTR/WL(LZB(IPQc,IRc) = 500 x 100/375 =133

Now we must consider for each of the three sites, the best way to compute
(P pa @) >a R at that site. The choices include which site should P 1 @ be

computed at, and which of the methods (1)—(7) should be used to join P 1 @ -

with R. The options are summarized in Figure 11.34.

Site of Site of Strategy Cost of Joinin
g Cost of Total
Result P Q R with P Q PraQ C(())si
@ @ Fetch R co+Tr =110 530 = 640
Lookup R 2¢o + Tpq(l +Tr/Irc) = 2520 530 = 3050
A Fetch PQ, R 2cp + Tpg + Tr = 620 20 = 640
¥ Fetch PQra R co + Tpor = 143 1030 = 1173
Fetch PQ, R 2co + Tpg + Tr = 620 1030 = 1650
B @ Fetch PQ, R 2co 4+ Tpg + Tr = 620 530 = 1150
Jél Fetch R co+Tgr =110 20 = 130
Lookup R 2co + TPQ(l +Tr/Irc) = 2520 20 = 2540
107 Fetch PQ>a R co+ Tpor = 143 1030 = 1173
Fetch PQ, R 2co +Tpg + Tr = 620 1030 = 1650
¥ @ Fetch PQ co +Tpg =510 530 = 1040
Lookup PQ@ 2co + Tr(1+ Tprq/Irpgc) = 253 530 = 783
B Fetch PQ co +Tpg = 510 20 = 530
Lookup PQ 2c0 + Tr(1+ Trq/Ipgc) = 253 20 = 273
¥ None needed 0 1030 = 1030

Figure 11.34 Strategies for evaluating the join of three relations.

From Figure 11.34 it is clear that if we want the result at site 8, we must
compute P pa @ at § (by fetching P to 3), then fetching R to 8, with a total

EXERCISES e

cost of 130. Tt seems that if we want the result at a, we have two choices with
the same cost, 640. For example, we could compute P > Q at B (by fetching P),
then fetch that result and R to a. However, we must, according to Algorithm
11.5, also consider computing the result at another site and shipping the result
to o, against the cost of 640 given by Figure 11.34. In this case, computing the
result at §, then shipping it with a cost of cg + Tpor = 143, has a total cost
of 273, which is less than the 640 given by Figure 11.34 for computation at c.
Similarly, an alternative optimal strategy for computing the result at v is to
compute at 3 and ship, with a cost of 273, which is identical to the value given
in Figure 11.34.

We are not yet done; we must consider the other two unordered trees,
which involve joining P with R first, or @ with R first. The former case is not
really a join but’a Cartesian product, and we shall rule it out of consideration
because of the size of the intermediate result, even though we said we would
not consider that cost. The latter strategy, joining @ and R first, will not prove
superior to what we have already, since our first step must ship a minimum of
100 tuples, that being the smaller of Tg and Tg. O

EXERCISES

11.1: Suppose a relation ABCD has a clustering index on A and nonclustering
indices on the other attributes; the four indices have image sizes of 50, 10,
20, and 100, respectively. The number of tuples in the relation is 10,000,
and the relation would fit on 500 blocks. Find all of the ways to evaluate
the query according to Algorithm 11.1.

74 (0 A=onB=1AC>2AD=3(ABCD))

Which method is the least costly?

+11.2: Some of the data structures of Chapter 6 (Volume I) provide clustering

indices, and some provide nonclustering indices. Indicate which of these
structures yield clustering indices, which yield nonclustering indices, and
which do not yield indices at all in the sense required for the System R opti-
mization algorithm of Section 11.2. You may make reasonable assumptions
about the uniformity of the data with which each structure is presented.

a) A hash table, with records stored in the buckets.
b) A hash table with records stored in a heap and pointed to by the

buckets.
c¢) A B-tree, with records stored in the leaves.
d) A k-d-tree.

e) A B-tree whose leaves point to linked lists of records with a fixed key
value (for example, as in a multilist structure).

