134 LOGIC AS A DATA MODEL

for each predicate p do
stratum(p] := 1;
repeat
for each rule r with head predicate p do begin
for each negated subgoal of r with predicate q do

stratum[p] := max(stratum(p], l1+stratum[q]);
for each nonnegated subgoal of r with predicate q do
stratum[p] := max(stratum(p], stratum(q])

end
until there are no changes to any stratum
Or some stratum exceeds the number of predicates

Figure 3.7 Stratification computation.

Example 3.19: If there are no negated subgoals, then Algorithm 3.5 immedi-
ately halts with all predicates in stratum 1, which is correct.

For a less trivial example, consider the rules of Example 3.17. Initially, D,
g, and 7 each have stratum 1. Rule (1) forces us to increase the stratum of p
to 2, and then the rule (2) forces us to increase the stratum of g to 3. The first
rule then requires the stratum of p to be 4. We now have a stratum higher than
the number of predicates, and so conclude the rules are not stratifiable. That
conclusion is correct. For example, ¢ appears as a negated subgoal in the first
rule, which has head predicate p, yet g depends on p.

For another example, consider the rules of Example 3.18. Starting with
all four predicates in stratum 1, rule (3) forces us to increase ¢ to stratum 2.
However, there are no further adjustments that need to be made. We conclude
p, 7, and s are in stratum 1; ¢ is in stratum 2. That makes sense, because r
and s are EDB relations, while p is an IDB relation that can be computed from
these by Algorithm 3.3 or 3.4, without any uses of negation. After we have
computed p, we can then pretend the negation of p is an EDB relation. Since
¢ is not recursive, we can compute the relation for g by Algorithm 3.2. [J

The correctness of Algorithm 3.5 is proved by the following lemmas and
theorem.

Lemma 3.2: If a logic program has a stratification, then it is stratified.

Proof: The reader should not be lulled by the similarity of the terms “strati-
fied” and “has a stratification” into thinking that they are easy to prove equiva-
lent. In fact they are equivalent, but the proof requires some work. Recall that
a program is stratified if whenever there is a negated subgoal with predicate
¢ in the body of a rule for predicate p, there is no path in the dependency
graph from p to ¢. It is easy to see from the definition of a “stratification” that

135
3.6 NEGATIONS IN RULE BODIES

the stratum of predicates along any path in the dependency ghrap];l c?n nzxge;
decrease, because those paths go from subgoal to head., andbt e ls ratum
head predicate is never less than the strz.atum of one of its su %oa:i s.Then e

Suppose a program had a stratification, but was not stratitzed. o phere
would be a path in the dependency graph to some ¢ from s}?me iil su ! et
negated g was a subgoal of a rule r for p. The existence of the pal say e
the stratum of ¢ is at least as high as the stratum of p, yet the rule r req
that the stratum of g be less than that of p. [

Lemma 3.3: If a logic program is stratified, then Algorithm 3.5 he;lts (zln t};zz
program without producing a stratum higher than n, the number of predica
in the program. . f
Proof: Each time we increase the stratum of.some predicate P because Zl
some predicate ¢ in the algorithm of Figure 3.7, it must be thatA qis ; suisgrcl)ot
(negated or not) of a rule for p. If we increase strat%m[p] to ¢, and ¢
negated, then write ¢ 4, p; if ¢ is nega..ted, write ¢ = p. F(;lr examfl:t, iégg
sequence of stratum changis di:%cuszd in Example 3.19 for the nonstr

le 3.17 is p=>qg=D. o
ruleSF(Z)fr%::}?;?cal reasong, it is convenient to add a new symbol start, which is
assumed not to be a predicate. We then let start =Y p for a.ll. predicates p.

It is an easy induction on the number of times Algomthm 3..5 changes af
stratum that if we set the stratum of a predicate p to 2 then there is a cham. 0t
— and = steps from start to p that includes at lea'st 1 = steps. ’I‘h;a1 kez p;nn
in the proof is that if the last step by which Algorithm 53.5 makes the stra urz
of preachiis ¢ 4 p, then there is a chain with at leasg 1—1 =>.steps to g, a}?
one more makes at least ¢ =’s to p. If the step by which Algorl.thl.n 3.5 r'na es
the stratum of p reach 7 is ¢ % p, then thege distalready a chain including at

;= and this chain can be extended to p. '
leaStl\ZIo:,sntootii; that if the stratum of some predicate reaches n + 1, thfere is
a chain with at least n + 1 =’s. Thus some predicate, say p, appears twice as
the head of a =. Thus, a part of the chain is

a=p@Sp |
where i < j. Also, observe that every portion of the chail} is a gath 1(;:11 the
dependency graph; in particular, there is a path from p to gz in the dependency
aph. .
i pThe fact that go 4 p is a step implies th:.at there is a rule with he?rd D
and negated subgoal gz. Thus, there is a path in the dependency grapg tf)m
the head, p, of some rule to a negated subgoal,.qz, of that rule, contra 1(f: ;ﬁg
the assumption that the logic program is stratified. ‘We conclude that 1d e
program is stratified, no stratum produced by Algorithm 3.5 ever exceeds n,



136 LOGIC AS A DATA MODEL

and therefore, Algorithm 3.5 must eventually halt and answer “yes.” [J

Theorem 3.6: Algorithm 3.5 correctly determines whether a datalog program
with negation is stratified.

Proof: Evidently, if Algorithm 3.5 halts and says the program is stratified,
then it has produced a valid stratification. Lemma 3.2 says that if there is 3
stratification, then the program is stratified, and Lemma 3.3 says that if the
logic program is stratified, then Algorithm 3.5 halts and says “yes” (the program
is stratified). We conclude that the algorithm says “yes” if and only if the given
logic program is stratified. [

Corollary 3.3: A logic program is stratified if and only if it has a stratification.

Proof: The three-step implication in the proof of Theorem 3.6 incidentally
proves that the three conditions “stratified,” “has a stratification,” and “Algo-
rithm 3.5 says ‘yes’,” all are equivalent. (]

Safe, Stratified Rules

In order that a sensible meaning for rules can be defined we need more than
stratification; we need safety. Recall that we defined rules to be “safe” in
Section 3.2 if all their variables were limited, either by being an argument of
a nonnegated, ordinary subgoal, or by being equated to a constant or to a
limited variable, perhaps through a chain of equalities. When we have negated
subgoals, the definition of “safe” does not change. We are not allowed to use
negated subgoals to help prove variables to be limited.

Example 3.20: The rules of Examples 3.16, 3.17, and 3.18 are all safe. The
rule of Example 3.15 is not safe, since Y appeared in a negated subgoal but in
no nonnegated subgoal, and therefore could not be limited. However, as we saw

in that example, we can convert that rule to a pair of safe rules that intuitively
mean the same thing. [J

When rules are both safe and stratified, there is a natural choice from
among possible fixed points that we shall regard as the “meaning” of the rules.
We process each stratum in order, starting with the lowest first. Suppose we
are working on a predicate p of stratum i. If a rule for p has a subgoal with
a predicate ¢ of stratum less than i, we can obtain ¢’s relation, because that
relation is either an EDB relation or has been computed when we worked on
previous strata. Of course, no subgoal can be of stratum above 1, if we have a
valid stratification. Moreover, if the subgoal is negated, then stratum of g must
be strictly less than 3.

As a consequence of these properties of a stratification, we can view the set
of rules for the predicates of stratum i as a recursive definition of the relations
for exactly the stratum-; predicates, in terms of relations for the EDB relations
and all IDB relations of lower strata. As the equations for the IDB predicates

137
3.6 NEGATIONS IN RULE BODIES

of stratum 7 have no negated subgoals of stratum i, we may apply Algorithm
.4 to solve them. .
- o’f[‘}?:e only technicality concerns how we create the relatlon' fo.r a negat.ed
ubgoal ~¢(X1,...,Xn) of a rule 7, so that we may pretend it is the ﬁn‘lte
iela%ion belonging to some nonnegated subgoal. Defme DOM to be t}ie umzr;
of the symbols appearing in the EDB relations and in the rulels themselves. s
i bol not in the EDB or the rules can appear 1
we argued, in safe rules, no sym e
ituti f a rule true. Therefore, we lose
ubstitution that makes the body o .
2ys restricting the relation for a negated subgoal to consist only of tuples whose
lues are chosen from DOM. . o
" Thus, let @ be the relation already computed for ¢ (or given, if g is an
EDB predicate). Let the relation @ for subgoal ~¢(X1,..., X,) be

DOM x ---x DOM (n times) — @

If we make the analogous substitution :t;o:r)) iach negatedt}sllétﬁzi glx Zlée ;;1113: ggi
3 then apply Algorithm 3.3 to compute '

zl}clrea‘lglg% ;rz(lilic(l:ates of sﬁa?cl one stratum, g, the'n we shall obtain tth(_a Sanii rels:clz
as if we had managed to use the inﬁm’te.relatmn of. all tuPIes no t ;ln mbp; ace
of Q. The reason is that we can prove, in an easy induction olnt. e nfuStratum
rounds of Algorithm 3.3, that every tuple we adgi to an IDB ri ation of stratum
i consists of tuples whose components are all in DOM. T (}i 1proo ar?n o
only on the observation that, as the rules are safe, every variable :Ill)ple o gcan
a negated subgoal appears also in a;l nor;rﬁegtatzzd ascibi?:id (t}}i;/err;lat 'f:) I,l e
i i ive hypothesis to show that at e '
irtlx‘ll: I:iflhgéna(,i :Lclt;::t oyprOM x -+ x DOM. We can thus offer the follovvzlizlkgl
algorithm for computing the “perfect” fixed point of a datalog program

safe, stratified negation. .
Algorithm 3.6: Evaluation of Relations for Safe, Stratified Datalog Programs.

INPUT: A datalog program whose rules are safe, rectified, and stratified. Also,
relations for all the EDB predicates of the program. .
OUTPUT: Relations for all the IDB predicates, forming a minimal fixed point

of the datalog program. N
METHOD: First, compute the stratification for the program by Algori nrrl1 eI;ts.’
Compute DOM by projecting all EDB relations onto each of their é:ompc; nent
and then taking the union of these projections and the set of constants app g
i ny.

N th’i‘;:rlle?z)rlfe?ic{l stratum ¢, in turn, do the fo.llowing steps. Whendee trea(;}tl
stratum 4, we have already computed the relatlofls for the ID]?)gre 1(?:&3t z
lower strata, and of course we are given t.he relations for the E 1 tﬁrer ellatior;
Thus, in particular, if a rule at stratum 7 has a negated subgoal, the

for that subgoal is known.



138
LOGIC AS A DATA MODEL

1 . .
go;rfl%% Igach Zanegated subgoal in a rule for stratum i. If that subgoal
: predicate or an IDB predicate at a st 3

) relation already known for that predicate. retum below i, use the

: for.teach nfagated subgoal in a rule for stratum i, let @ be the relatio
cireé.s ;l)cre;ilcate; @ must have been computed, because the stratum of thg

Ese tlfla e 101tr'theDneOg;\,/;ed subgoal is less than 7. If this subgoal has arity n,
e relation X - X DOM — @Q in place of thj :

. t &

; DOM appears n times in the product. g e A
: glsrztAlgolrlthm 3.3 or 3.4 to compute the relations for the IDB predicates of
um z, treating all the subgoals whose relations were obtained in either

step (2) or step (3), as if the i i
Rl Rl y were EDB relations with the values given by

gii?ple 3.31: Consider the rules of Example 3.18. Recall from Example 3.19
» T, and s are in stratum 1, and ¢ is in stratum 2 i .
' ) i . The relations R
fnfiox; }:‘ and s are given EDB relations. Since all EDB relations are of aritanld
Were are no constants in the rules, DOM is Jjust 7 (R) U m1(S), or R 55’
P er(fil;sttiovgo;k on.stratulin 1, and we merely need one round t(; find that.
; or p 1s equal to R. Now, we proceed to i
! | ) stratum 2. Since
c(;))lll)lt(aiars ne.ia;ted, we must coxr'lpute P, a relation that includes all tuples thazt:
DOMposlil y be in the relation Q for g, yet are not in P. This relation is
A = RUS - P SInce R = P was just established, P = § — R here
Ce there 1s no recursion in stratum 2, we immediately get .

Q(X) = S(X) = P(X) = $(X)n P(X) =
5(X) N (S(X) - R(X)) = S(X) - R(X)

That is, Q(X) = S(X) - R(X).\7
In Example 3.18, we observed that there could be more than one minimal

fixed point. The fixed poi :
point produced b
point §, of that example. DP uced by Algorithm 3.6 corresponds to the fixed

Perfect Fixed Points

L .
mi,tdﬁ cr-a[;lll1 éciei:ixrifl point computed by Algorithm 3.6 the perfect fixed point or
A 1ttle we can prove about Algorithm 3.6, si
L -0, since as we understand
.18, ply computes one of a number of minj i
for a set of safe, stratified rules wi i Ly, e mever g bomntS
with negation. Technicall
what Algorithm 3.6 produces is a mini int. Howores, the s Lot
: inimal fixed point. However, the fact
: . : £
we have a fixed point follows from Theorem 3.4 (the correctness of Alg((:)rit?l?ri

17 Th
alwz;:aéd?;rilciulq not assume from this example that the result of Algorithm 3.6 i
& vy B fom :ha. in .relatlona}i ?Igebra. for the IDB relations. Generally, ;hen the r-uk;S
» there 1s no such formula, and the onl 6 i "
that the recursion of rule (2) in Examl;le 3.18 is trrlizi:leason MERATCS A el

3.7 RELATIONAL ALGEBRA AND LOGIC 139

3.3 for computing least fixed points when there is no negation) and a simple
induction on the strata. That is, we show by induction on ¢ that the equations
derived from the rules with heads of stratum ¢ are satisfied.

As for showing we have a minimal fixed point, we can actually show more.
The perfect fixed point S has the following properties:

1. If S; is any other fixed point, then for every predicate p of stratum 1, p’s
relation in S is a subset (not necessarily proper) of p’s relation in ;.

9. Forall i > 1, if Sy is any fixed point that agrees with S on the relations
for all predicates of strata less than ¢, then the relations for the predicates
of stratum 4 are subsets in S of their relations in Sj.

It follows from (1) and (2) that S is a minimal fixed point. In fact, S
is “least” of all minimal fixed points if one puts the most weight on having
small relations at the lowest strata. All the results mentioned above are easy
inductions on the strata, and we shall leave them as exercises for the reader.

3.7 RELATIONAL ALGEBRA AND LOGIC

We can view relational algebra expressions as defining functions that take given
relations as arguments and that produce a value, which is a computed relation.
Likewise, we know that datalog programs take EDB relations as arguments and
produce IDB relations as values. We might ask whether the functions defined by
relational algebra and by logic programs are the same, or whether one notation
is more expressive than the other.

The answer, as we shall prove in this section, is that without negation in
rules, relational algebra and datalog are incommensurate in their expressive
power; there are things each can express that the other cannot. With negation,
datalog is strictly more expressive than relational algebra. In fact, the set of
functions expressible in relational algebra is equivalent to the set of functions
we can express in datalog (with negation) if rules are restricted to be safe,
nonrecursive, and have only stratified negation. In this section, “nonrecursive
datalog” will be assumed to refer to rules of this form unless stated otherwise.
Note that since the rules are nonrecursive, it is easy to see that they must be

stratified.

From Relational Algebra to Logical Rules

Mimicking the operations of relational algebra with datalog rules is easy except
for selections that involve complex conditions. Thus, we begin with two lemmas
that let us break up selections by arbitrary formulas into a cascade of unions
and selections by simpler formulas. Then we give a construction of rules from
arbitrary relational algebra formulas.

Lemma 3.4: Every selection is equivalent to a selection that does not use the

NOT operator.





