128 LOGIC AS A DATA MODEL

3.4 does so too. The actual inductive hypothesis we need is that a tuple added
to some IDB relation P in round j by Algorithm 3.3, not having been placed
in that relation on any prior round, will be placed in both P and AP on round
J by Algorithm 3.4. The basis, round 1, is immediate, since the same formulas,
given by EVAL, are used by both algorithms.

For the induction, one has only to notice that if a tuple y is added to some
IDB relation P on round ¢, and p was not previously in P, then there must
be some rule r for predicate p (the predicate corresponding to relation P) and
tuples in the relations for all the subgoals of r such that

1. The tuples for the subgoals together yield u, and
2. At least one of these tuples, say v, was added to its relation, say T, on
round ¢ — 1.

By the inductive hypothesis with j = i — 1 and observation (2) above, v is in
AT when we start round 7 of Algorithm 3.4. Therefore the term of EVAL-INCR
that uses AT (or rather its copy into some AQ;) will produce u, since that
term uses full relations for subgoals other than the one that supplies v, and v
will be supplied by AT. [J

3.6 NEGATIONS IN RULE BODIES

There are frequent situations where we would like to use negation of a predicate
to help express a relationship by logical rules. Technically, rules with negated
subgoals are not Horn clauses, but we shall see that many of the ideas developed
so far apply to this broader class of rules. In general the intuitive meaning of
a rule with one or more negated subgoals is that we should complement the
relations for the negated subgoals, and then compute the relation of the rule
exactly as we did in Algorithm 3.1.

Unfortunately, the “complement” of a relation is not a well-defined term.
We have to specify the relation or domain of possible values with respect to
which the complement is taken. That is why relational algebra uses a set-
difference operator, but not a complementation operator. But even if we specify
the universe of possible tuples with respect to which we compute the comple-
ment of a relation, we are still faced with the fact that this complement will
normally be an infinite relation. We cannot, therefore, apply operations like
selection or join to the complement, and we cannot perform Algorithm 3.1 on
a rule with negation in a straightforward manner.

It turns out that one critical issue we face when trying to define the meaning
of rules with negated subgoals is whether the variables appearing in the negated
subgoals also appear in nonnegated, ordinary (non-built-in) subgoals. In the
next example, we see what happens when things work right, and then we see
where problems arise when variables appear only in negated subgoals. Later,
we examine another problem that comes up when some subgoals are negated:

3.6 NEGATIONS IN RULE BODIES 129

there is not necessarily a least fixed point for a logic program. Furthermore,
since we have no mechanism for proving negated facts, the proof-theoretic point
of view does not help us, and we are forced to select one of the minimal models
as the “meaning” of the logic program.

Example 3.14: Suppose we want to define “true cousins” to be individuals
who are related by the cousin predicate of Figure 3.1 but who are not also
related by the sibling relationship. We might write

trueCousin(X,Y) :- cousin(X,Y) & -sibling(X,Y).

This rule is very much like an application of the difference operator of relational
algebra, and indeed we can compute T' = C' — S, where T' is the relation for
trueCousin, and C and S are the relations for cousin and sibling, computed
as in the previous section.

The formula T = C — S is easily seen to give the same relation as

C(X,Y) §5(X,Y)

where S is the “complement” of S with respect to some universe U that includes
at least the tuples of C.1! For example, we might let U be the set of individuals
that appear in one or more tuples of the parent relation, i.e., those individuals
mentioned in the genealogy. Then, S would be U x U — S, and surely C is a
subset of U x U. [J

Unfortunately, not all uses of negation are as straightforward as the one
in Example 3.14. We shall investigate some progressively harder problems con-
cerning what rules with negation mean, and then develop a set of restraints on
the use of negation that allow datalog rules with this limited form of negation
to be given a sensible meaning. The first problem we encounter is what happens
when variables appear only in negated subgoals.

Example 3.15: Consider the following rule:
bachelor(X) :- male(X) & —-married(X,Y). (3.6)

Here, we suppose that male is an EDB relation with the obvious meaning, and
married(X,Y) is an EDB relation with the meaning that X is the husband of
Y. :

One plausible interpretation of (3.6) is that X is a bachelor if he is male and
there does not exist a Y such that Y is married to X. However, if we computed
the relation for this rule by joining the relation male(X) with the “complement”
of married, that is, with the set of (X,Y) pairs such that X is not married
to Y, we would get the set of pairs (X,Y) such that X is male and Y is not
married to X. If we then project this set onto X, we find that “bachelors” are

11 Notice that the natural join is an intersection when the sets of attributes are the same,
and intersection with the complement is the same as set difference.

130 LOGIC AS A DATA MODEL

males who are not married to absolutely everybody in the universe; that is,
there exists some Y such that Y is not married to X.

To avoid this apparent divergence between what we intuitively expect a
rule should mean and what answer we would get if we interpreted negation in
the obvious way (complement the relation), we shall forbid the use of a variable
in a negated subgoal if that variable does not also appear in another subgoal,
and that subgoal is neither negated nor a built-in predicate. This restriction is
not a severe one, since we can always rewrite the rule so that such variables do
not appear.'? For example, to make the attributes of the two relations involved
in (3.6) be the same, we need to project out Y from married; that is, we rewrite
the rules as:

husband(X) :- married(X,Y).
bachelor(X) :- male(X) & —husband(X).

These rules can then have their meaning expressed by:
husband(X) = mx (married(X,Y))
bachelor(X) = male(X) — husband(X)

or just:
bachelor(X) = male(X) — nx (married(X,Y))

O

While we shall forbid variables that appear only in negated subgoals, the
condition found in Example 3.14 and in the rewritten rules of Example 3.15,
which is that the set of variables in a negated subgoal exactly match the vari-
ables of a nonnegated subgoal, is not essential. The next example gives the idea
of what can be done in cases when there are “too few” variables in a negated
subgoal.

Example 3.16: Consider:

canBuy (X,Y) :- likes(X,Y) & -broke(X).
Here, likes and broke are presumed EDB relations. The intention of this rule
evidently is that X can buy Y if X likes ¥ and X is not broke. Recall the
relation for this rule is a join involving the “complement” of broke, which we

might call notBroke. The above rule can then be expressed by the equivalent
relational algebra equation:

canBuy(X,Y) = likes(X,Y) < not Broke(X) (3.7)

The fact that notBroke may be infinite does not prevent us from computing

12 provided, of course, that we take the interpretation of =g(X1,...,Xn) to be that used
implicitly in (3.6): “there do not exist values of those variables among X1,..., Xn that
appear only in negated subgoals such that these values make g(X1,..., Xn) true.”

3.6 NEGATIONS IN RULE BODIES 131

the right side of (3.7), because we can start with all the likes(X,Y") tuples and
then check that each one has an X-component that is a member of notBroke,
or equivalently, is not a member of broke.

As we did in the previous two examples, we can express (3.7) as a set
difference of finite relations if we “pad” the broke tuples with all possible objects
that could be liked. But there is no way to say “all objects” in relational algebra,
nor should there be, since that is an infinite set.

We have to realize that we do not need all pairs (X, Z) such that X is broke
and Z is anything whatsoever, since all but a finite number of the possible Z’s
will not appear as a second component of a likes tuple, and therefore could not
possibly be in the relation canBuy anyway. The set of possible Z’s is expressed
in relational algebra as my(likes), or equivalently, my (likes(X,Y)). We may
then express canBuy in relational algebra as:

canBuy(X,Y) = likes(X,Y) — (broke(X) x my (likes(X, Y)))

Finally, we can derive from the above expression a way to express canBuy
with rules where the only negated literal appears in a rule with a positive literal
that has exactly the same set of variables, as we derived in Example 3.15. Such
rules can naturally be interpreted as straightforward set differences. The general
idea is to use one rule to obtain the projection onto the needed set of values,
ma(likes) in this case, then use another rule to pad the tuples in the negated
relation. The rules for the case at hand are:

liked(Y) :- likes(X,Y).
brokePair(X,Y) :- broke(X) & liked(Y).
canBuy(X,Y) :- likes(X,Y) & —brokePair(X,Y).

O

Nonuniqueness of Minimal Fixed Points

Adjusting the attribute sets in differences of relations is important, but it does
not solve all the potential problems of negated subgoals. If §; and S; are two
solutions to a logic program, with respect to a given set of EDB relations, we
say 81 < 8 if §; < 83 and §; # S2. Recall that fixed point & is said to be
minimal if there is no fixed point S such that § < §;. Also, &) is said to be
a least fixed point if S; < & for all fixed points S. When rules with negation
are allowed, there might not be a least fixed point, but several minimal fixed
points. If there is no unique least fixed point, what does a logic program mean?

Example 3.17: Consider the rules:

(1) pX) :- r(X) & ~qX).
(2) qX) :- r(X) & —=p(X).

132 LOGIC AS A DATA MODEL

Let P, Q, and R be the relations for IDB predicates p and g, and EDB predicate
T, respectively. Suppose R consists of the single tuple 1; i.e., R = {1}. Let &,
be the solution P = § and Q = {1}; let S, have P = {1} and Q = 0. Both S,
and S are solutions to the equations P=R - Q and Q = R — p.13

Observe that S; < S, is false, because of the respective values of @, and
Sz < 8 is false because of P. Moreover, there is no solution S such that S < S
or § < &;. The reason is that such an S would have to assign @ to both P and
Q. But then P = R — Q would not hold.
We conclude that both S1 and Sy are fixed points, and that they are both
mal. Thus, the set of rules above has no least fixed point, because if there
were a least fixed point S, we would have S < Siand S < S,. [J

mini

Stratified Negation

To help deal with the problem of many minimal fixed points, we shall permit
only “stratified negation.” Formally, rules are stratified if whenever there is a
rule with head predicate p and a negated subgoal with predicate g, there is no
path in the dependency graph from p to ¢.'* Restriction of rules to allow only
stratified negation does not guarantee a least fixed point, as the next example
shows. However, it does allow a rational selection from among minimal fixed
points, giving us one that has become generally accepted as “the meaning” of
a logic program with stratified negation.

Example 3.18: Consider the stratified rules':15

(1) p(X) - r(x).
(2) pX) - px).
(3) q(X) :- s(X) & —p(X).

The above set of rules is stratified, since the only occurrence of a negated
subgoal, =p(X) in rule (3), has a head predicate, ¢, from which there is no path

to p in the dependency graph. That is, although ¢ depends on D,

p does not
depend on gq.

Let EDB relations r and s have corresponding relations R and S, and let

IDB relations p and q have relations P and Q. Suppose R = {1} and § = {1,2}.

13 Note that rules (1) and (2) are logically equivalent, but these two set-valued equations are
not equivalent; certain sets P, @, and R satisfy one but not the other. This distinction
between logically equivalent forms as we convert logic into computation should be seen

as a “feature, not a bug.” It allows us, ultimately, to develop a sensible semantics for a
large class of logical rules with negation.

The construction of the dependency graph does not change when we introduce negated
subgoals. If =¢(X1,...,Xn) is such a subgoal, and the rule has head predicate p, we
draw an arc from q to P, just as we would if the - were not present.

If one does not like the triviality of the rule

example along the lines of Example 3.9 (
as is illustrated here.

14

(2), one can develop a more complicated
paths in a graph) that exhibits the same problem

133
3.6 NEGATIONS IN RULE BODIES

i = = {2}, while another is Sz
Ijhen gnePS Oiu?fg}l»saiti gévin @b.yTI;la; ig,lij&ds? and{ é]:z are solutions to the
glVentim}rlls P=PURandQ=S-P.1° N e con be no
equaOne can check that both S; and S; are minimal. Thus, ore can be no
t fixed point for the rules of this example, by the same 1reasotr}1l rghand s
o de there is none for the rules of Example 3.17. On the othe d, o
COHChl“ - 1.” since its tuples each can be obtained by making substitu 10h
. natfu ri i the bodies of rules and deducing the fact tha?t a”ppears at. fg s
(1)1f k(fl1 OV\‘;; :}Claillzee later how the proper attribution of “meaning” to stratifie
ead.

rules produces S; rather than Ss. O

Finding Stratifications

i i i it i to have an
i i tions is stratified, it is useful ea
i t every logic program with nega : : . "
S{nce't?l(l)m to t};st gfor stratification. While this test is quite easy, we e:pla::l '
; g:i):;ail because it also gives us the stratification of the ruleg; that 1s,C ;1 glrat p
::Illle predicates into strata, which are the largest sets of predicates su

1. If a predicate p is the head of a rule with a subgoal that is a negated g,
' is in a lower stratum than p. . . .
2 ;? ;I;e?iicate p is the head of a rule with a subgoal that 1sfa nonnegated g,
' then the stratum of p is at least as high as the stratum of g. '
i a
The strata give us an order in which the relations for thefI]lDlB Pred'ltcat;(/e: 23‘5
: . ;
ty of this order is that following 1t,
be computed. The useful proper ‘
treat any negated subgoals as if they were EDB relations.

Algorithm 3.5: Testing For and Finding a Stratification. 1
INPUT: A set of datalog rules, possibly with some negated subgoals. e
OUTPUT: A decision whether the rules are stratified. If so, we also produ

stratification. y
METHOD: Start with every predicate assigned to stratum L.GRelpviiattsili Z};:,;?; .
the rules. If a rule with head predicate p hajs a negated 51;. o(ia T
let p and ¢ currently be assigned to strata z'and J respectively. o _a_te(,i -t
p to stratum j +1. Furthermore, if a rule. with h'ead p has ta nt(:l ' 8 b
with predicate ¢ of stratum j, and i < j, reassign p to stra j-

e formahzedhlz f;il(liri:ig:‘;vhere no strata can be changed by the algorithm of
Fi . vgeTriailcen the rules are stratified, and the current strata .form 1‘:he oletp:;
e also ithm. If we ever reach a condition where some predicate is assign
Zfst‘;c?:tilrioglat ié larger than the total number of predicates, then the rules are

not stratified, so we halt and return “no.” O -

i = ould be
16 If we did not have rule (2), then the first equation would be P = R, and there w
a unique solution to the equations.

