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and there is nothing else we can do. However, if there are other copies of A, 
then we can proceed as if the copy at N did not exist. When N recovers, it not 
only has the responsibility to find out about the transactions being committed 
or aborted when it failed, but now it must find out which of its items are out 
of date, in the sense that transactions have run at the other sites and modified 
copies of items that, like A, are found at N and also at other nodes. 

Obtaining Up-to-Date Values 

When the failed site resumes activity, it must obtain the most recent values for 
all its items. We shall suggest two general strategies for doing so. 

1.	 If site M discovers that site N has failed, M records this fact in its log. 
When N recovers, it sends a message to each site. If M receives such 
a message, M examines its log back to the point where it discovered N 
had failed, and sends the most recent value it has for all items it holds in 
common with N.15 The values of these items must b~ locked while the 
recovery of N is in progress, and we must be careful to obtain the most 
recent value among all of the sites with copies. We can tell the most recent 
values, because all transactions that have committed a value for item A 
must have done so in the same order at all the sites of A, provided we have 
a correct locking method. If we are using timestamp-based concurrency 
control, the write-times of the values determine their order. 

2.	 All copies of all items may be assigned a write-time, whether or not time
stamp concurrency control is in use. When a site N recovers, it sends for 
the write-times of all its items, as recorded in the other sites. These items 
are temporarily locked at the other sites, and the current values of items 
with a more recent write-time than the write-time at N are sent to N. 

This description merely scratches the surface of the subject of crash man
agement. For example, we must consider what happens when a site needed to 
restore values to a second site has itself failed, or if a site fails while another 
is recovering. The interested reader is encouraged to consult the bibliographic 
notes for analyses of the subject. 

10.8 DISTRIBUTED DEADLOCKS 

Recall from Section 9.1 that we have simple and elegant methods to prevent 
deadlock in single-processor systems. For example, we can require each transac
tion to request locks on items in lexicographic order of the items' names. Then 
it will not be possible that we have transaction TI waiting for item Al held by 

15	 Note that under the methods of locking and commitment described in this chapter, M 
must discover N has failed if there is a transaction that involves any item held by both 
Nand M, so N will hear of all its out-of-date items. 
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T2 , which is waiting for A 2 held by T3 , and so on, while Tk is waiting for Ak 
held by TI • That follows because the fact that T2 holds a lock on Al while it 
is waiting for A2 tells us Al < A2 in lexicographic order. Similarly, we may 
conclude A2 < A3 ••• Ak < AI, which implies a cycle in the lexicographic order, 
an impossibility. 

With care, we can generalize this technique to work for distributed data
bases. If the locking method used is a centralized one, where individual items, 
rather than copies, are locked, then no modification is needed. If we use a 
locking method like the k-of-n schemes, which lock individual copies, we can 
still avoid deadlocks if we require all transactions to lock copies in a particular 
order: . 

1. If A < B in lexicographic order, then a transaction T must lock all the 
, copies of A tln)t it needs before locking any copies of B. 
"	 2. The copies of each item A are ordered, and a transaction locks all copies 

of A that it needs in that order. 

1 Even if it is possible under some circumstances to avoid deadlock by ju
dicious ordering of copies, there is a reason to look elsewhere for a method of 
dealing with deadlocks. We discussed in Example 9.21 why it is sometimes 
difficult to predict in advance the set of items that a given transaction needs 
to lock. If so, then locking needed items in lexicographic order is either not 
possible or requires the unnecessary locking of items. 

In the remainder of this section we shall take a brief look at some general 
methods for deadlock detection and deadlock avoidance that do not place con
straints on the order in which a transaction can access iterns. First, we consider 
the use of timeouts to detect and resolve deadlocks. Next, the construction of 
a waits-for graph is considered as a detection mechanism. Finally, we consider 
a timestamp-based approach to avoiding deadlocks altogether. 1 

] 
Deadlock Resolution by Timeout 

A simple approach to detecting deadlocks is to have a transaction time out and 
abort if it has waited sufficiently long for a lock that it is likely to be involved 
in a deadlock. The timeout period must be sufficiently short that deadlocked 
transactions do not hold locks too long, yet it must be sufficiently long that we 
do not often abort transactions that are not really deadlocked. 

This method has a number of advantages. Unlike the waits-for-graph ap

proach to be described next, it requires no extra message traffic. Unlike the
 
timestamp-based methods to be described, it does not (usually) abort transac

tions that are not involved in a deadlock. It is prone, however, to aborting all
 
or many of the transactions in a deadlock, rather than one transaction, which
 
is generally sufficient to break the deadlock.
._------------_....' 
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Waits-for-Graphs 

We mentioned in Section 9.1 that a necessary and sufficient test for a deadlock 
in a single-processor system is to construct a waits-for graph, whose nodes are 
the transactions. The graph has an arc from T1 to T2 if T1 is waiting for a lock 
on an item held by T2• Then there is a deadlock if and only if there is a cycle in 
this graph. In principle, the same technique works in a distributed environment. 
The trouble is that at each site we can maintain easily only a local waits-for 
graph, while cycles may appear only in the global waits-for graph, composed of 
the union of the local waits-for graphs. 

Example 10.7: Suppose we have transactions T1 and T2 that wish to lock 
items A and B, located at nodes NA and NB, respectively. A and B may be 
copies of the same item or may be different items. Also suppose that at N

A
, 

(a subtransaction of) T2 has obtained a write-lock on A, and (a subtransaction 
of) T1 is waiting for that lock. Symmetrically, at NB T1 has a lock on B, which 
T2 is waiting for. 

@------.@
 
(a) Local waits-for graph at NA . 

@r--------® 
(b) Local waits-for graph at NB. 

(c) Global waits-for graph. 

Figure 10.7 Global deadlock detection. 

The local waits-for graphs at N A and N B are shown in Figure 10.7(a) and 
(b); clearly each is acyclic. However, the union of these graphs is the cycle 
shown in Figure 10.7(c). As far as we can tell at either of the sites NA or NB, 

there might not be a deadlock. For example, from NA alone, we cannot be sure 
that anything prevents T2 from eventually committing and releasing its lock on 
A, then allowing T1 to get the lock. 0 

Example 10.7 illustrates why in order to detect cycles it is necessary to 
send messages that allow a global waits-for graph to be constructed. There are 
several ways this t8sk could be ar.r.omnli.<:hpr!· 
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1.	 Use a central node to receive updates to the local waits-for graphs from all 
of the sites periodically. This technique has the advantages and disadvan
tages of centralized methods of locking: it is vulnerable to failure of the 
central node and to concentration of message traffic at that site,16 but the 
total amount of traffic generated is relatively low. 

2.	 Pass the current local waits-for graphs among all of the sites, preferring 
to append the local graph to. another message headed for another site if 
possible, but sending the local graph to each other site periodically any
way. The amount of traffic this.mElthod generates can be much larger than 
for the central-node method. However, if the cost of messages is relatively 
invariant to their length, and frequently waits-for information can be "pig
gybacked" on other messages, then the real cost of passing information is 
small. ' 

I 

Timeliness of Waits-for Graphs 

In either method described above, the union of the local waits-for graphs that 
any particular site knows about currently does not have to reflect the situation 
that existed globally at any particular time. That doesn't prevent the detection 
of deadlocks, since if a cycle in the global waits-for graph exists, it won't go 
away until the deadlock is resolved by aborting at least one of the transactions 
involved in the cycle. Thus, the arcs of a cycle in the global graph will eventually 
all reach the central node (in method 1) or reach some node (in method 2), and 
the deadlock will be detected. 

However, errors in the opposite direction can occur. There can be phantom 
deadlocks which appear as cycles in the union of the local waits-for graphs that 
have accumulated at some site, yet at no time did the global waits-for graph 
have this cycle. 

Example 10.8: The transaction T2 in Example 10.7 might decide to abort 
for one of several reasons, shortly after the local graph of Figure 10.7(a) was 
sent to the central site. Then the graph of Figure 10.7(b) might be sent to the 
central site. Before an update to Figure 1O.7(a) can reach the central site, that 
node constructs the graph of Figure 1O.7(c). Thus, it appears that there is a 
deadlock, and the central node will select a victim to abort. If it selects T2 , 

there is no harm, since T2 aborted anyway. However, it could just as well select 
T1 , which would waste resources. 0 

Timestamp-Based Deadlock Prevention 

We mentioned schemes that avoid deadlocks by controlling the order in which 

16 Note.~~at in cOI~par.is0n.,. =.entralized, or ~oordina~or-b~~eddistr~bllt~d c0Ill.mit protocols 
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items are locked by any given transaction, e.g., locking in lexicographic order or 
taking all locks at once. There also are schemes that do not place constraints on 
the order in which items are locked or accessed, but still can assure no deadlocks 
occur. These schemes use timestamps on transactions, and each guarantees that 
no cycles can occur in the global waits-for graph. It is important to note that i
the timestamps are used for deadlock avoidance only; access control of items is 

1still by locking. 
In one scheme, should (a subtransaction of) T1 be waiting for (a subtransac

tion of) T2 , then it must be that the timestamp of T1 is less than the timestamp 
of T2 ; in the second scheme, the opposite is true. In either scheme, a cycle in 
the waits-for graph would consist of transactions with monotonically increasing 
or monotonically decreasing timestamps, as we went around the cycle. Nei
ther is possible, since when we go around the cycle we come back to the same 
timestamp that we started with. 

We now define the two deadlock avoidance schemes. .Suppose we have 
transactions T1 and T2 with timestamps hand t2, respectively,and a sub
transaction of T1 attempts to access an item A locked by a subtransaction of 
T2•	 '\ 

1.	 In the wait-die scheme, TI waits for a lock on A if t1 < t2, i.e., if TI is the 
'Older transaction. If h > t2, then TI is aborted. 

2.	 In the wound-wait scheme, T1 waits for a lock on A if h > t2. If tl < t2, 
then T2 is forced to abort and release its lock on A to TIP 

In either scheme, the aborted transaction must initiate again with the same 
timestamp, not with a new timestamp. Reusing the original timestamp guar
antees that the oldest transaction, in either scheme, cannot die or be wounded. 
Thus, each transaction will eventually be allowed to complete, as the following 
theorem shows. 

Theorem 10.3: There can be neither deadlocks nor livelocks in the wait-die 
or the wound-wait schemes. 

Proof: Consider the wait-die scheme. Suppose there is a cycle in the global 
waits-for graph, i.e., a sequence of transactions Tll ... ,Tk such that each Ti is 
waiting for release of a lock by Ti+l' for 1 ~ i < k, and Tk is waiting for TI . Let 
ti be the timestamp of Ti . Then t l < t2 < ., . < tk < tll which implies tl < t ll 
an impossibility. Similarly, in the wound-wait scheme, such a cycle would imply 
tl > t2 > ... > tk > tl, which is also impossible. 

To see why no livelocks occur, let us again consider the wait-die scheme. If 

17	 Incidentally, the term "wound-wait" rather than "kill-wait" is used because of the image
 
that the "wounded" subtransaction must, before it dies, run around informing all the
 
other subtransactions of its transaction that they too must abort. That is not really
 
necessary if a distributed commit algorithm is used, but the subject is gruesome, and
 
the less said the better.
 

Method Messages Phantom Other 
aborts 

Medium Can abort more Timeout None 
number than one trans

action to resolve 
one deadlock 

Few Vulnerable to Waits-for Graph Medium 
node failure, Centralized traffic 
bottlenecks 

Waits-for Graph High Few
 
Distributed traffic
 

Timestamp None Many
 

Figure 10.8 Comparison of deadlock-handling methods. 

T is the transaction with the lowest timestamp, that is, T is the oldest trans
action that has not completed, then T never dies. It may wait for younger 
transactions to release their locks, but since there are no deadlocks, those locks 
will eventually be released, and T will eventually complete. When T first initi
ates, there are some finite number of live, older transactions. By the argument 
above, each will eventually complete, making T the oldest. At that point, T is 
sure to complete the next time it is restarted. Of course, in ordinary operation, 
transactions will not necessarily complete in the order of their age, and in fact 
most will proceed without having to abort. 

The no-livelock argument for the wound-wait scheme is similar. Here, the 
oldest transaction does not even have to wait for others to release locks; it takes 
the locks it needs and wounds the transactions holding them. 0 

Comparison of Methods 

Figure 10.8 summarizes the advantages and disadvantages of the methods we 
have covered in this section. The column labeled "Messages" refers to the 
message traffic needed to detect deadlocks. The column "Phantom aborts" 
refers to the possibility that transactions not involved in a deadlock will be 

required to abort. 
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