
1

Introduction to SQL

Select-From-Where Statements

Multirelation Queries

Subqueries

2

Why SQL?

�SQL is a very-high-level language.

� Say “what to do” rather than “how to do it.”

� Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java.

�Database management system figures
out “best” way to execute query.

� Called “query optimization.”

3

Select-From-Where Statements

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of

the tables

4

Our Running Example

�All our SQL queries will be based on the
following database schema.
� Underline indicates key attributes.

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

5

Example

�Using Beers(name, manf), what beers are
made by Anheuser-Busch?

SELECT name

FROM Beers

WHERE manf = ’Anheuser-Busch’;

6

Result of Query

name

Bud

Bud Lite

Michelob

. . .
The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Anheuser-Busch, such as Bud.

7

Meaning of Single-Relation Query

�Begin with the relation in the FROM
clause.

�Apply the selection indicated by the
WHERE clause.

�Apply the extended projection indicated
by the SELECT clause.

8

Operational Semantics

Check if
Anheuser-Busch

name manf

Bud Anheuser-Busch Include t.name
in the result, if so

Tuple-variable t
loops over all
tuples

9

Operational Semantics --- General

�Think of a tuple variable visiting each
tuple of the relation mentioned in FROM.

�Check if the “current” tuple satisfies the
WHERE clause.

�If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple.

10

* In SELECT clauses

�When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation.”

�Example: Using Beers(name, manf):

SELECT *

FROM Beers

WHERE manf = ’Anheuser-Busch’;

11

Result of Query:

name manf

Bud Anheuser-Busch

Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

.

Now, the result has each of the attributes
of Beers.

12

Renaming Attributes

�If you want the result to have different
attribute names, use “AS <new name>” to
rename an attribute.

�Example: Using Beers(name, manf):

SELECT name AS beer, manf

FROM Beers

WHERE manf = ’Anheuser-Busch’

13

Result of Query:

beer manf

Bud Anheuser-Busch

Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

.

14

Expressions in SELECT Clauses

�Any expression that makes sense can
appear as an element of a SELECT clause.

�Example: Using Sells(bar, beer, price):

SELECT bar, beer,

price*114 AS priceInYen

FROM Sells;

15

Result of Query

bar beer priceInYen

Joe’s Bud 285

Sue’s Miller 342

… … …

16

Example: Constants as Expressions

�Using Likes(drinker, beer):

SELECT drinker,

’likes Bud’ AS whoLikesBud

FROM Likes

WHERE beer = ’Bud’;

17

Result of Query

drinker whoLikesBud

Sally likes Bud

Fred likes Bud

… …

18

Example: Information Integration

�We often build “data warehouses” from
the data at many “sources.”

�Suppose each bar has its own relation
Menu(beer, price) .

�To contribute to Sells(bar, beer, price)
we need to query each bar and insert
the name of the bar.

19

Information Integration --- (2)

�For instance, at Joe’s Bar we can issue
the query:

SELECT ’Joe’’s Bar’, beer, price

FROM Menu;

20

Complex Conditions in WHERE
Clause

�Boolean operators AND, OR, NOT.

�Comparisons =, <>, <, >, <=, >=.

� And many other operators that produce
boolean-valued results.

21

Example: Complex Condition

�Using Sells(bar, beer, price), find the price
Joe’s Bar charges for Bud:

SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;

22

Patterns

�A condition can compare a string to a
pattern by:

� <Attribute> LIKE <pattern> or
<Attribute> NOT LIKE <pattern>

�Pattern is a quoted string with % =
“any string”; _ = “any character.”

23

Example: LIKE

�Using Drinkers(name, addr, phone) find
the drinkers with exchange 555:

SELECT name

FROM Drinkers

WHERE phone LIKE ’%555-_ _ _ _’;

24

NULL Values

�Tuples in SQL relations can have NULL
as a value for one or more components.

�Meaning depends on context. Two
common cases:

�Missing value : e.g., we know Joe’s Bar has
some address, but we don’t know what it is.

� Inapplicable : e.g., the value of attribute
spouse for an unmarried person.

25

Comparing NULL’s to Values

�The logic of conditions in SQL is really 3-
valued logic: TRUE, FALSE, UNKNOWN.

�Comparing any value (including NULL
itself) with NULL yields UNKNOWN.

�A tuple is in a query answer iff the
WHERE clause is TRUE (not FALSE or
UNKNOWN).

26

Three-Valued Logic

�To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE =
1, FALSE = 0, and UNKNOWN = ½.

�AND = MIN; OR = MAX, NOT(x) = 1-x.

�Example:

TRUE AND (FALSE OR NOT(UNKNOWN))
= MIN(1, MAX(0, (1 - ½))) =

MIN(1, MAX(0, ½)) = MIN(1, ½) = ½.

27

Surprising Example

�From the following Sells relation:

bar beer price

Joe’s Bar Bud NULL

SELECT bar

FROM Sells

WHERE price < 2.00 OR price >= 2.00;
UNKNOWN UNKNOWN

UNKNOWN

28

Reason: 2-Valued Laws !=
3-Valued Laws

�Some common laws, like commutativity
of AND, hold in 3-valued logic.

�But not others, e.g., the law of the
excluded middle : p OR NOT p = TRUE.

�When p = UNKNOWN, the left side is
MAX(½, (1 – ½)) = ½ != 1.

29

Multirelation Queries

�Interesting queries often combine data
from more than one relation.

�We can address several relations in one
query by listing them all in the FROM
clause.

�Distinguish attributes of the same name
by “<relation>.<attribute>” .

30

Example: Joining Two Relations

�Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked
by at least one person who frequents Joe’s
Bar.

SELECT beer

FROM Likes, Frequents

WHERE bar = ’Joe’’s Bar’ AND

Frequents.drinker =

Likes.drinker;

31

Formal Semantics

� Almost the same as for single-relation
queries:

1. Start with the product of all the relations
in the FROM clause.

2. Apply the selection condition from the
WHERE clause.

3. Project onto the list of attributes and
expressions in the SELECT clause.

32

Operational Semantics

�Imagine one tuple-variable for each
relation in the FROM clause.

� These tuple-variables visit each
combination of tuples, one from each
relation.

�If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause.

33

Example

drinker bar drinker beer

tv1 tv2
Sally Bud

Sally Joe’s

Likes
Frequents

to outputcheck these
are equal

check
for Joe

34

Explicit Tuple-Variables

�Sometimes, a query needs to use two
copies of the same relation.

�Distinguish copies by following the
relation name by the name of a tuple-
variable, in the FROM clause.

�It’s always an option to rename
relations this way, even when not
essential.

35

Example: Self-Join

�From Beers(name, manf), find all pairs
of beers by the same manufacturer.
� Do not produce pairs like (Bud, Bud).

� Produce pairs in alphabetic order, e.g.
(Bud, Miller), not (Miller, Bud).

SELECT b1.name, b2.name

FROM Beers b1, Beers b2

WHERE b1.manf = b2.manf AND

b1.name < b2.name;

36

Subqueries

�A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a
value in a number of places, including
FROM and WHERE clauses.

�Example: in place of a relation in the
FROM clause, we can use a subquery
and then query its result.

�Must use a tuple-variable to name tuples of
the result.

37

Example: Subquery in FROM

�Find the beers liked by at least one person
who frequents Joe’s Bar.

SELECT beer

FROM Likes, (SELECT drinker

FROM Frequents

WHERE bar = ’Joe’’s Bar’)JD

WHERE Likes.drinker = JD.drinker;

Drinkers who
frequent Joe’s Bar

38

Subqueries That Return One Tuple

�If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value.

� Usually, the tuple has one component.

� A run-time error occurs if there is no tuple
or more than one tuple.

39

Example: Single-Tuple Subquery

� Using Sells(bar, beer, price), find the
bars that serve Miller for the same price
Joe charges for Bud.

� Two queries would surely work:

1. Find the price Joe charges for Bud.

2. Find the bars that serve Miller at that price.

40

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);

The price at
which Joe
sells Bud

41

The IN Operator

�<tuple> IN (<subquery>) is true if and
only if the tuple is a member of the
relation produced by the subquery.

� Opposite: <tuple> NOT IN (<subquery>).

�IN-expressions can appear in WHERE
clauses.

42

Example: IN

�Using Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of
each beer that Fred likes.

SELECT *

FROM Beers

WHERE name IN (SELECT beer

FROM Likes

WHERE drinker = ’Fred’);

The set of
beers Fred
likes

43

Remember These From Lecture #1?

SELECT a

FROM R, S

WHERE R.b = S.b;

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

44

IN is a Predicate About R’s Tuples

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
R

b c
2 5
2 6
S

(1,2) satisfies
the condition;
1 is output once.

Two 2’s

45

This Query Pairs Tuples from R, S

SELECT a

FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
R

b c
2 5
2 6
S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice.

46

The Exists Operator

�EXISTS(<subquery>) is true if and only
if the subquery result is not empty.

�Example: From Beers(name, manf) ,
find those beers that are the unique
beer by their manufacturer.

47

Example: EXISTS

SELECT name

FROM Beers b1

WHERE NOT EXISTS (

SELECT *

FROM Beers

WHERE manf = b1.manf AND

name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

Notice the
SQL “not
equals”
operator

48

The Operator ANY

�x = ANY(<subquery>) is a boolean
condition that is true iff x equals at least
one tuple in the subquery result.

� = could be any comparison operator.

�Example: x >= ANY(<subquery>) means x
is not the uniquely smallest tuple produced
by the subquery.

� Note tuples must have one component only.

49

The Operator ALL

�x <> ALL(<subquery>) is true iff for
every tuple t in the relation, x is not
equal to t.

� That is, x is not in the subquery result.

�<> can be any comparison operator.

�Example: x >= ALL(<subquery>)
means there is no tuple larger than x in
the subquery result.

50

Example: ALL

�From Sells(bar, beer, price), find the
beer(s) sold for the highest price.

SELECT beer

FROM Sells

WHERE price >= ALL(

SELECT price

FROM Sells);

price from the outer
Sells must not be
less than any price.

51

Union, Intersection, and Difference

�Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

� (<subquery>) UNION (<subquery>)

� (<subquery>) INTERSECT (<subquery>)

� (<subquery>) EXCEPT (<subquery>)

52

Example: Intersection

� Using Likes(drinker, beer), Sells(bar, beer,
price), and Frequents(drinker, bar), find
the drinkers and beers such that:

1. The drinker likes the beer, and

2. The drinker frequents at least one bar that
sells the beer.

53

Solution

(SELECT * FROM Likes)

INTERSECT

(SELECT drinker, beer

FROM Sells, Frequents

WHERE Frequents.bar = Sells.bar

);

The drinker frequents
a bar that sells the
beer.

Notice trick:
subquery is
really a stored
table.

54

Bag Semantics

�Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics.

� That is, duplicates are eliminated as the
operation is applied.

55

Motivation: Efficiency

�When doing projection, it is easier to
avoid eliminating duplicates.

� Just work tuple-at-a-time.

�For intersection or difference, it is most
efficient to sort the relations first.

� At that point you may as well eliminate the
duplicates anyway.

56

Controlling Duplicate Elimination

�Force the result to be a set by
SELECT DISTINCT . . .

�Force the result to be a bag (i.e., don’t
eliminate duplicates) by ALL, as in
. . . UNION ALL . . .

57

Example: DISTINCT

�From Sells(bar, beer, price), find all the
different prices charged for beers:

SELECT DISTINCT price

FROM Sells;

�Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price.

58

Example: ALL

�Using relations Frequents(drinker, bar) and
Likes(drinker, beer):

(SELECT drinker FROM Frequents)

EXCEPT ALL

(SELECT drinker FROM Likes);

�Lists drinkers who frequent more bars than
they like beers, and does so as many times
as the difference of those counts.

59

Join Expressions

�SQL provides several versions of (bag)
joins.

�These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

60

Products and Natural Joins

�Natural join:

R NATURAL JOIN S;

�Product:

R CROSS JOIN S;

�Example:

Likes NATURAL JOIN Sells;

�Relations can be parenthesized subqueries, as
well.

61

Theta Join

�R JOIN S ON <condition>

�Example: using Drinkers(name, addr) and
Frequents(drinker, bar):

Drinkers JOIN Frequents ON

name = drinker;

gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b.

